1. Solve the equation $\tan 2 \theta=3$ for $0^{\circ}<\theta<360^{\circ}$.
2. Given that $\arcsin x=\arccos y$, prove that $x^{2}+y^{2}=1$. [Hint: Let $\arcsin x=\theta$]
3. In this question you must show detailed reasoning.

Solve the equation

$$
2 \tan \theta+\cos \theta=0
$$

in the range $0^{\circ}<\theta<360^{\circ}$.
4. Solve the equation $\cos 2 \theta=0.3$ for $0^{\circ} \leq \theta<360^{\circ}$.

Mark scheme

Question		Answer/Indicative content	Marks	Part marks and guidance	
1		71.5 (6505118..) soi 35.7 to 36 125.78..., 215.78..., 305.78... to 3 or more sf	M1 A1 A1	or 1.24 (9045772..) (rad) or 79.5 (1672353..) (grad) if AO, SC1 for all four answers in radians or grad r.o.t to 3 or more sf $0.62452286,2.195319213,3.76611554$ 5.336911867 (rad), but 0 if extra values in range if M1A0AO, SC1 for 251.565..., $431.565 \ldots, 611.565 \ldots$ Examiner's Comments Most candidates started correctly, a few doubled 71.6 instead of halving it, but most successfully obtained 35.8°. 215.835.8 ${ }^{\circ}$ was frequently found, but the other two values were often missed. Some candidates rounded off their calculator value, and then over-specified their final values (215.79 etc was common), thus losing the second A mark. A common error was arctan(1.5) to start, and some candidates unwittingly worked in radians and went on to add multiples of 90°.	39.75836177..., 139.75..., 239.75...339.75...(grad) for second A1, ignore extra values outside range, AO if extra values in range
		Total	3		
2		$\begin{aligned} & \arcsin x=\theta \\ & \Rightarrow x=\sin \theta \\ & \arccos y=\theta \Rightarrow y=\cos \theta \end{aligned}$	M1(AO1.1) M1(AO1.1) E1(AO2.1)		

