SEQUENCES AND SERIES

1	Expand $(1 + 4x)^4$ in ascending powers of x, simplifying the coefficients.	(4)
2	A geometric series has first term 3 and common ratio -2 .	
	a Find the first term of the series.b Find the sum of the first term terms of the series.	(2)
	 c Show that the sum of the first eight positive terms of the series is 65.535 	(2) (4)
	c Show that the sum of the first eight positive terms of the series is 05 555.	(4)
3	a Expand $(1 + 3x)^7$ in ascending powers of x up to and including the term in x^4 , simplifying each coefficient in the expansion.	(4)
	b Use your series with a suitable value of x to estimate the value of 1.03^7 correct to 5 decimal places.	(3)
4	Evaluate $\sum_{r=3}^{12} 2^r$.	(4)
5	a Expand $(2 + x)^5$, simplifying the coefficient in each term.	(4)
	b Hence, or otherwise, write down the expansion of $(2 - x)^5$.	(1)
	c Show that	
	$(2 + \sqrt{5})^5 - (2 - \sqrt{5})^5 = k\sqrt{5},$	
	where k is an integer to be found.	(4)
6	Ginny opens a savings account and decides to pay $\pounds 200$ into the account at the start of each month. At the end of each month, interest of 0.5% is paid into the account.	
	a Find, to the nearest penny, the interest paid into the account at the end of the third month.	(4)
	b Show that the total interest paid into the account over the first 12 months is £79.45 to the nearest penny.	(5)
7	Find the first four terms in the expansion of $(1 - 3x)^8$ in ascending powers of x, simplifying each coefficient.	(4)
8	a Prove that the sum, S_n , of the first <i>n</i> terms of a geometric series with first term <i>a</i> and common ratio <i>r</i> is given by	
	$S_n = \frac{a(1-r^n)}{1-r} .$	(4)
	b Find the exact sum of the first 16 terms of the geometric series with fourth term 3 and fifth term 6.	(5)
9	a Write down the first three terms in the binomial expansion of $(1 + ax)^n$, where <i>n</i> is a positive integer, in ascending powers of <i>x</i> .	(2)
	Given that the coefficient of x^2 is three times the coefficient of x,	
	b show that $n = \frac{6+a}{2}$.	(4)
	a	
	Given also that $a = \frac{1}{3}$,	
	c find the coefficient of x' in the expansion.	(3)

	SEQUENCES AND SERIES CO.	ntinued
10	Find the first three terms in the expansion of $(2 + 5x)^6$ in ascending powers of x, simplifying each coefficient.	(4)
11	The first term of a geometric series is 162 and the sum to infinity of the series is 486. a Find the common ratio of the series.	(3)
	b Find the sixth term of the series.	(2)
	c Find, to 3 decimal places, the sum of the first ten terms of the series.	(4)
12	a Expand $(1 + 3x)^4$ in ascending powers of x, simplifying the coefficients.	(4)
	b Find the coefficient of x in the expansion of $(1 + 4x - x^2)(1 + 3x)^4$	(3)
	(1 + 4x - x)(1 + 5x).	(3)
13	In a computer game, each player must complete the tasks set at each level within a fixed amount of time in order to progress to the next level.	
	The time allowed for level 1 is 2 minutes and the time allowed for each of the other levels is 10% less than that allowed in the previous level.	
	a Find, in seconds, the time allowed for completing level 4.	(2)
	b Find, in minutes and seconds, the maximum total time allowed for completing the fine 12 levels of the game.	:st (4)
14	Given that	
	$(1 + \frac{x}{2})^8 (1 - x)^6 \equiv 1 + Ax + Bx^2 + \dots,$	
	find the values of the constants A and B.	(7)
15	The terms of a sequence are defined by the recurrence relation	
	$u_r = 2u_{r-1}, r > 1, u_1 = 6.$	
	a Write down the first four terms of the sequence.	(1)
	b Evaluate $\sum_{r=1}^{10} u_r$.	(3)
16	a Expand $(1 + x)^4$ in ascending powers of x.	(2)
	b Hence, or otherwise, write down the expansion of $(1 - x)^4$ in ascending powers of x.	(1)
	c By using your answers to parts a and b , or otherwise, solve the equation $(1 + x)^4 + (1 - x)^4 = 82,$	
	for real values of x.	(5)
17	The common ratio of a geometric series is 1.5 and the third term of the series is 18.	
	a Find the first term of the series.	(2)
	b Find the sum of the first six terms of the series.	(2)
	c Find the smallest value of k such that the k th term of the series is greater than 8000.	(4)
18	The first two terms in the expansion of $(1 + \frac{ax}{2})^{10} + (1 + bx)^{10}$, in ascending powers of are 2 and $90x^2$	<i>x</i> ,
	Given that $a < b$, find the values of the constants a and b.	(9)