

- 1 a Expand $(1 4x)^{\frac{1}{2}}$ in ascending powers of x up to and including the term in x^3 and state the set of values of x for which the expansion is valid. (4)
 - **b** By substituting x = 0.01 in your expansion, find the value of $\sqrt{6}$ to 6 significant figures. (3)

$$f(x) = \frac{4}{1 + 2x - 3x^2}.$$

- a Express f(x) in partial fractions. (3)
- **b** Hence, or otherwise, find the series expansion of f(x) in ascending powers of x up to and including the term in x^3 and state the set of values of x for which the expansion is valid. (5)
- **3** a Expand $(2-x)^{-2}$, |x| < 2, in ascending powers of x up to and including the term in x^3 . (4)
 - **b** Hence, find the coefficient of x^3 in the series expansion of $\frac{3-x}{(2-x)^2}$. (2)

4
$$f(x) \equiv \frac{4}{\sqrt{1 + \frac{2}{3}x}}, -\frac{3}{2} < x < \frac{3}{2}.$$

- **a** Show that $f(\frac{1}{10}) = \sqrt{15}$. (2)
- **b** Expand f(x) in ascending powers of x up to and including the term in x^2 . (3)
- c Use your expansion to obtain an approximation for $\sqrt{15}$, giving your answer as an exact, simplified fraction. (2)
- **d** Show that $3\frac{55}{63}$ is a more accurate approximation for $\sqrt{15}$.
- **5** a Expand $(1-x)^{\frac{1}{3}}$, |x| < 1, in ascending powers of x up to and including the term in x^2 . (3)
 - **b** By substituting $x = 10^{-3}$ in your expansion, find the cube root of 37 correct to 9 significant figures. (3)
- 6 The series expansion of $(1 + 5x)^{\frac{3}{5}}$, in ascending powers of x up to and including the term in x^3 , is

$$1 + 3x + px^2 + qx^3$$
, $|x| < \frac{1}{5}$.

- a Find the values of the constants p and q. (4)
- **b** Use the expansion with a suitable value of x to find an approximate value for $(1.1)^{\frac{3}{5}}$. (2)
- **c** Obtain the value of $(1.1)^{\frac{3}{5}}$ from your calculator and hence find the percentage error in your answer to part **b**. (2)
- **7** a Find the values of A, B and C such that

$$\frac{8-6x^2}{(1+x)(2+x)^2} \equiv \frac{A}{1+x} + \frac{B}{2+x} + \frac{C}{(2+x)^2}.$$
 (4)

b Hence find the series expansion of $\frac{8-6x^2}{(1+x)(2+x)^2}$, |x| < 1, in ascending powers of x up to and including the term in x^3 , simplifying each coefficient. (7)

SERIES continued

- 8 a Expand $(1-2x)^{\frac{1}{2}}$, $|x|<\frac{1}{2}$, in ascending powers of x up to and including the term in x^2 . (3)
 - **b** By substituting x = 0.0008 in your expansion, find the square root of 39 correct to 7 significant figures. (4)
- **9 a** Find the series expansion of $(1 + 8x)^{\frac{1}{3}}$, $|x| < \frac{1}{8}$, in ascending powers of x up to and including the term in x^2 , simplifying each term. (3)
 - **b** Find the exact fraction k such that

$$\sqrt[3]{5} = k\sqrt[3]{1.08}$$
 (2)

- c Hence, use your answer to part a together with a suitable value of x to obtain an estimate for $\sqrt[3]{5}$, giving your answer to 4 significant figures. (3)
- 10 $f(x) \equiv \frac{6x}{x^2 4x + 3}, |x| < 1.$
 - a Express f(x) in partial fractions. (3)
 - **b** Show that for small values of x,

$$f(x) \approx 2x + \frac{8}{3}x^2 + \frac{26}{9}x^3$$
. (5)

- 11 a Find the binomial expansion of $(4 + x)^{\frac{1}{2}}$ in ascending powers of x up to and including the term in x^2 and state the set of values of x for which the expansion is valid. (4)
 - **b** By substituting $x = \frac{1}{20}$ in your expansion, find an estimate for $\sqrt{5}$, giving your answer to 9 significant figures. (3)
 - c Obtain the value of $\sqrt{5}$ from your calculator and hence comment on the accuracy of the estimate found in part **b**. (2)
- **12** a Expand $(1+2x)^{-\frac{1}{2}}$, $|x|<\frac{1}{2}$, in ascending powers of x up to and including the term in x^3 . (4)
 - **b** Hence, show that for small values of x,

$$\frac{2-5x}{\sqrt{1+2x}} \approx 2-7x+8x^2-\frac{25}{2}x^3. \tag{3}$$

c Solve the equation

$$\frac{2-5x}{\sqrt{1+2x}} = \sqrt{3} \,. \tag{3}$$

- **d** Use your answers to parts **b** and **c** to find an approximate value for $\sqrt{3}$.
- **13** a Expand $(1+x)^{-1}$, |x| < 1, in ascending powers of x up to and including the term in x^3 . (2)
 - **b** Hence, write down the first four terms in the expansion in ascending powers of x of $(1 + bx)^{-1}$, where b is a constant, for |bx| < 1. (1)

Given that in the series expansion of

$$\frac{1+ax}{1+bx}, |bx| < 1,$$

the coefficient of x is -4 and the coefficient of x^2 is 12,

- c find the values of the constants a and b, (5)
- **d** find the coefficient of x^3 in the expansion. (2)