1. i. The first three terms of an arithmetic progression are 2x, x + 4 and 2x - 7 respectively. Find the value of x.

[3]

- ii. The first three terms of another sequence are also 2x, x + 4 and 2x 7 respectively.
 - a. Verify that when x = 8 the terms form a geometric progression and find the sum to infinity in this case.

[4]

b. Find the other possible value of *x* that also gives a geometric progression.

[4]

- 2. Sarah is carrying out a series of experiments which involve using increasing amounts of a chemical. In the first experiment she uses 6 g of the chemical and in the second experiment she uses 7.8 g of the chemical.
 - i. Given that the amounts of the chemical used form an arithmetic progression, find the total amount of chemical used in the first 30 experiments.

[3]

ii. Instead it is given that the amounts of the chemical used form a geometric progression. Sarah has a total of 1800 g of the chemical available. Show that *N*, the greatest number of experiments possible, satisfies the inequality

1.3^N ≤ 91,

and use logarithms to calculate the value of *N*.

[6]

- [8]
- 4. A geometric progression has first term 3 and second term 6.
 - i. State the value of the common ratio.

З.

term.

© OCR 2017.

- ii. Find the value of the eleventh term.
- iii. Find the sum of the first twenty terms.
- 5. An arithmetic progression u_1 , u_2 , u_3 , ... is defined by $u_1 = 5$ and $u_{n+1} = u_n + 1.5$ for $n \ge 1$.

to find the smallest value of k such that the value of the kth term is less than 0.15.

i. Given that $u_k = 140$, find the value of k.

A geometric progression w_1 , w_2 , w_3 , ... is defined by $w_n = 120 \times (0.9) n-1$ for $n \ge 1$.

ii. Find the sum of the first 16 terms of this geometric progression, giving your answer correct to 3 significant figures.

[2]

iii. Use an algebraic method to find the smallest value of *N* such that $\sum_{n=1}^{N} u_n > \sum_{n=1}^{\infty} w_n$.

[6]

 [4]
 b. In a different geometric progression, the second term is -3 and the sum to infinity is 4. Show that there is only one possible value of the common ratio and hence find the first

[1]

[2]

[2]

[3]

6.	Geometric Sequences Business A made a £5000 profit during its first year. In each subsequent year, the profit increased by £1500 so that the profit was £6500 during the third year and so on.	uring
	Business B made a £5000 profit during its first year. In each subsequent year, the profit was 90% of the previous year's profit.	
	(a) Find an expression for the total profit made by business A during the first <i>n</i> years. Give your answer in its simplest form.	[2]
	(b) Find an expression for the total profit made by business B during the first <i>n</i> years. Give your answer in its simplest form.	[3]
	(c) Find how many years it will take for the total profit of business A to reach $\pounds385_{000}$.	[3]
	(d) Comment on the profits made by each business in the long term.	[2]
7.	In this question you must show detailed reasoning. It is given that the geometric series $1 + \frac{5}{3x-4} + \left(\frac{5}{3x-4}\right)^2 + \left(\frac{5}{3x-4}\right)^3 + \dots$	
	is convergent. (a) Find the set of possible values of <i>x</i> , giving your answer in set notation.	[5]

(b) Given that the sum to infinity of the series is $\frac{2}{3}$, find the value of x.

[3]

8(i).

The seventh term of a geometric progression is equal to twice the fifth term. The sum of the first seven terms is 254 and the terms are all positive. Find the first term, showing that it can be written in the form $p + q\sqrt{r}$ where p, q and r are integers. [6]

[3]

[2]

- (ii). The seventh term of a geometric progression is equal to twice the fifth term. The sum of the first seven terms is 254 and the terms are all positive. Find the first term, showing that it can be written in the form $p + q\sqrt{r}$ where p, q and r are integers. [6]
- 9. The first term of a geometric progression is 12 and the second term is 9.
 - (a) Find the fifth term.

The sum of the first N terms is denoted by S_N and the sum to infinity is denoted by S_{∞} . It is given that the difference between S_{∞} and S_N is at most 0.0096.

(b) Show that
$$\left(\frac{3}{4}\right)^N \le 0.0002$$
 [3]

(c) Use logarithms to find the smallest possible value of *N*.

^{10.} In this question you must show detailed reasoning.

The *n*th term of a geometric progression is denoted by g_n and the *n*th term of an arithmetic progression is denoted by a_n . It is given that $g_1 = a_1 = 1 + \sqrt{5}$, $g_3 = a_2$ and $g_4 + a_3 = 0$.

Given also that the geometric progression is convergent, show that its sum to infinity is [12] $4+2\sqrt{5}$

^{11.} The table shows information about three geometric series. The three geometric series have different common ratios.

	First	Common	Number	Last
	term	ratio	of terms	term
Series 1	1	2	<i>N</i> 1	1024

Series 2	1	r 2	n ₂	1024
Series 3	1	ľ3	n_3	1024

(a) Find *n*₁.

(b) Given that r_2 is an integer less than 10, find the value of r_2 and the value of n_2 . [2]

(c) Given that r_3 is **not** an integer, find a possible value for the sum of all the terms in Series 3. [4]

END OF QUESTION paper

[2]

Mark scheme

	Question		Answer/Indicative content	Marks	Part marks and	d guidance
1		i	(x + 4) - 2x = (2x - 7) - (x + 4)	M1	Attempt to eliminate σ to obtain equation in x only	Equate two expressions for <i>d</i> , both in terms of <i>x</i> Could use $a + (n - 1)d$ twice, and then eliminate <i>d</i> Could use $u_1 + u_2 + u_3 = S_3$ or $u_2 = \frac{1}{2} (u_1 + u_3)$
		i	OR			
		i	2x + d = x + 4 $2x + 2d = 2x - 7$	A1	Obtain correct equation in just <i>x</i>	Allow unsimplified equation A0 if brackets missing unless implied by subsequent working or final answer
		i	2 <i>x</i> = 15 <i>x</i> = 7.5	A1	Obtain <i>x</i> = 7.5	Any equivalent form Allow from no working or T&I
		i				Alt method: B1 – state, or imply, $2x + 2d = 2x - 7$, to obtain $d' = -3.5$ M1 – attempt to find <i>x</i> from second equation in <i>x</i> and d' A1 – obtain $x = 7.5$
						Examiner's Comments
						Many candidates were successful in this part of the question, with the most popular approach being to first find $d = -3.5$ and then use a second
		i				equation to find <i>x</i> . This was usually successful, although sign errors proved a pitfall for some.
						further progress beyond finding <i>d</i> , often because they did not consider a third equation. The other common method was to find two expressions for

					<i>Geometric Sequences</i> <i>d</i> by considering the difference of consecutive terms which could then be equated and solved. This was an elegant and concise method, but a lack of brackets resulted in errors being made. Other, more creative, solutions were also seen including adding the sum of the three terms and equating this to an expression for S_3 .
	ii	terms are 16, 12, 9 $^{12}/_{16} = 0.75, ^{9}/_{12} = 0.75$	B1	List 3 terms	Ignore any additional terms given
	ii	common ratio of 0.75 so GP	B1	Convincing explanation of why it is a GP	Must show two values of 0.75, or unsimplified fractions Must state, or imply, that ratio has been checked twice, using both pairs of consecutive terms No need to show actual division of terms to justify 0.75, so allow eg arrows from one term to the next with 'x0.75'
					SR B2 if 16, 12, 9 never stated explicitly in a list but are soi in a convincing method for $r = 0.75$ twice
					Must be correct formula
	ï	$S_{\infty} = {}^{16}/_{1-0.75} = 64$	M1	Attempt use of #/1-r	Allow if used with their incorrect a and $/$ or r Allow if using $a = 8$, even if 16 given correctly in list
	ii		A1	Obtain 64	A0 if given as 'approximately 64'
					Examiner's Comments
	ii				Virtually all of the candidates gained the first mark for stating the three relevant terms, and most also gained the final two marks for finding the sum to infinity, though a few used $\frac{4}{3}$ as their ratio. It was the second mark that proved to be the most challenging. Candidates had been asked to verify

					Geometric Sequences that the terms did form a geometric progression, and were expected to provide a convincing proof that considered the ratio between two pairs of terms, or an equivalent justification. Whilst some candidates did provide this explanation, far too many assumed that it was a geometric progression and simply found the ratio from a single pair of terms.
	=	$^{(2x-7)}/_{(x+4)} = {}^{(x+4)}/_{2x}$ $4x^2 - 14x = x^2 + 8x + 16$	M1*	Attempt to eliminate r to obtain equation in x only	Equate two expressions for <i>r</i> , both in terms of <i>x</i> Could use ar^{n-1} twice, and then eliminate <i>r</i> from simultaneous eqns
	iii	OR			
		$2xr = x + 4 2xr^{2} = 2x - 7$ $3x^{2} - 22x - 16 = 0$ (3x + 2)(x - 8) = 0 $x = -2^{2}/3, x = 8$	A1	Obtain $3x^2 - 22x - 16 = 0$	Allow $6x^2 - 44x - 32 = 0$ Allow $3x^3 - 22x^2 - 16x = 0$, or a multiple of this Allow any equivalent form, as long as no brackets and like terms have been combined Condone no = 0, as long as implied by subsequent work
	iii		M1d*	Attempt to solve quadratic	Dependent on first M1 for valid method to eliminate <i>r</i> See guidance sheet for acceptable methods
	iii		A1	Obtain $x = -2/3$	Allow recurring decimal, but not rounded or truncated Condone $x = 8$ also given Allow from no working or T&I
	Ш				Examiner's Comments This proved to be a challenging question for many candidates. Whilst most were able to make some attempt at it, it was often not enough to gain even the first mark. The most efficient solution was to equate two algebraic expressions for the ratio,

					and then rearrange them to get a quadratic which could then be solved. Some candidates were able to provide a concise and elegant solution in this way. Some candidates did embark on this method, but then attempted to first simplify their fractions which invariably went wrong. Others started with the generic equations for the <i>n</i> th term of a geometric progression so that when they eliminated <i>r</i> their equation involved the square or square root of a rational expression.
		Total	11		
2	i	$S_{30} = {}^{30}/_2 (2 \times 6 + 29 \times 1.8)$	М1	Use <i>d</i> = 1.8 in AP formula	Could be attempting S_{30} or u_{30} Formula must be recognisable, though not necessarily fully correct, so allow M1 for eg 15(6 + 29 × 1.8), 15(12 + 14 × 1.8) or even 15(12 + 19 × 1.8) Must have $d = 1.8$ (not 1.3), $n = 30$ and $a = 6$
	i		A1	Correct unsimplified S_{30}	Formula must now be fully correct Allow for any unsimplified correct expression If using $\frac{1}{2}n(a + 1)$ then /must be correct when substituted
				Obtain 963	
	i	= 963	A1	Examiner's Comments The vast majority of candidates were able to gain full marks on this question. A few gained just one mark by finding the 30th term rather than the required sum of the first 30 terms.	Units not required
	ii	$r = 7.8/_6 = 1.3$	M1	Use $r = 1.3$ in GP formula	Could be attempting S_N , u_N or even S_∞ Formula must be recognisable, though not necessarily fully correct Must have $r = 1.3$ (not 1.8) and $a = 6$

ii	$\frac{6(1-1.3^N)}{1-1.3} \le 1800$	A1	Correct unsimplified S_W	Geometric Sequences Formula must now be fully correct Allow for any unsimplified correct expression
ii	$1 - 1.3^{N} \ge -90$	M1	Link sum of GP to 1800 and attempt to rearrange to $1.3^N \le k$	Must have used correct formula for S_N of GP Allow =, \ge or \le Allow slips when rearranging, including with indices, so rearranging to 7.8 ^{<i>N</i>} \le <i>k</i> could get M1
ii	1.3 ^{<i>N</i>} ≤ 91 AG	A1	Obtain given inequality	Must have correct inequality signs throughout Correct working only, so A0 if 6×1.3^{N} becomes 7.8 ^N , even if subsequently corrected
11	Wlog 1.3 ≤ log 91	M1	Introduce logs throughout and attempt to solve equation / inequality	Must be using $1.3^{N} \le 91$, $1.3^{N} = 91$ or $1.3^{N} \ge 91$ This M1 (and then A1) is independent of previous marks Must get as far as attempting N M0 if no evidence of use of logarithms M0 if invalid use of logarithms in attempt to solve
			Conclude $N = 17$	
			Examiner's Comments	Must come from solving 1.3 ^N ≤ 91 or 1.3 ^N = 91 (ie not incorrect inequality sign) Answer must be integer value
			Most candidates were able to gain some credit on this	Answer must be equality, so A0 for $N \le 17$
			question, but only a few scored full marks. The sum of	
			N terms was usually quoted correctly and candidates	SR Candidates who use pumorical valua(a) for Alash
			could then make an attempt to rearrange it. A	candidates who use numerical value(s) for 7v can
ii	$N \le 17.19$ hence $N = 17$	A1	of the inequality sign when multiplying or dividing by a	M1 Use $r = 1.3$ in a recognisable GP formula (M0
			negative number. Others started with an equality and	if <i>N</i> is not an integer value)
			then tried to justify the inequality sign at the end, which	A1 Obtain a correct unsimplified S_N
			was not sufficient to gain the accuracy mark. Some	
			candidates were unable to manipulate the indices, with	Candidates who solve $1.3^{N} \le 91$ and then use a
			$6 \times 1.3^{n} = 7.8^{n}$ being a fairly common error. When	value associated with their N (usually 17 and / or 18) in a CD formula will be aligible for the M141
			solving the given inequality, most candidates could use	for solving the inequality and also the M1A1 is the
			not then appreciate that the context of the question	SR above
			meant that <i>N</i> had to be an integer value. Some	
			meant that /v had to be an integer value. Some	

				candidates simply solved the given inequality and made no attempt to show where it had come from. Others solved the inequality and then tested their solution in the sum formula to justify it, without appreciating that they had not fully answered the question.	Geometric Sequences
		Total	9		
3		$ar = -3, \frac{a}{1-r} = 4$	B1	State $ar = -3$	Any correct statement, including $a \times t^{2-1} = -3$ etc soi
			B1	State $\frac{a}{1-r} = 4$	Any correct statement, not involving /* (unless it becomes 0) soi
		$-\frac{3}{r}=4(1-r)$	M1*	Attempt to eliminate either <i>a</i> or <i>r</i>	Using valid algebra so M0 for eg $a = -3 - r$ Must be using ar^{k} and $\pm a/(\pm 1 \pm r)$ Award as soon as equation in one variable is seen
		$4r^2 - 4r - 3 (= 0) / a^2 - 4a - 12 (= 0)$	A1	Obtain correct simplified quadratic	Any correct quadratic not involving fractions or brackets ie $4r^2 = 4r + 3$ gets A1
		(2r-3)(2r+1) = 0 / (a-6)(a+2) = 0	M1d*	Attempt to solve 3 term quadratic	See Appendix 1 for acceptable methods
		$r = -\frac{1}{2}$	M1**	Identify $r = -\frac{1}{2}$ as only ratio with a minimally acceptable reason	M0 if no, or incorrect, reason given Must have correct quadratic, correct factorisation and correct roots (if stated) If $r = -\frac{1}{2}$ s not explicitly identified then allow M1 when they use only this value to find <i>a</i> (or later eliminate the other value) Could accept $r = -\frac{1}{2}$ as $r < 1$ or reject $r = \frac{3}{2}$ as > 1 Could reject $a = -2$ as S_{m} is positive Could refer to convergent / divergent series

		<i>a</i> = 6	A1	Obtain <i>a</i> = 6 only	Geometric Sequences If solving quadratic in <i>a</i> , then both values of <i>a</i> may be seen initially - A1 can only be awarded when $a = 6$ is given as only solution
				Convincing reason for $r = -\frac{1}{2}$ as the only possible ratio	
		for sum to infinity – $1 < r < 1$	A1d**	Candidates were able to make a good start to this question, but only the most able could make progress beyond the first five marks. The majority could attempt the two relevant equations and then eliminate one of the variables, usually <i>a</i> . Substituting the equation for the sum to infinity into the equation for the second term usually resulted in the correct quadratic, whereas the fraction involved in doing the substitution the other way around caused problems for some. Nevertheless, many candidates did obtain the correct quadratic which they could then attempt to solve. Candidates then had to select the correct common ratio and also provide some reasoning for this choice. No credit was available for picking $r = -0.5$ with no, or an incorrect, reason. To gain full marks, the reasoning for the selection of $r = -0.5$ had to be convincing and fully complete. It was not sufficient to reject $r = 1.5$ without also explaining why the other was being accepted.	Must refer to $ r < 1$ or $-1 < r < 1$ oe in words A0 if additional incorrect statement No credit for answer only unless both <i>r</i> first found
		Total	8		
4	i	r= -2	B1	State –2 Examiner's Comments This question was a straightforward start to the paper,	Not ${}^{-6}/_{3}$ as final answer No need to see $r =$, and also condone other variables

				and nearly all of the candidates were able to state the correct value for the common ratio. The most common incorrect answer was $r = -9$, indicating a confusion between the definitions of arithmetic and geometric progressions.	Geometric Sequences
	ii	3 × (-2) ¹⁰ = 3072	M1	Attempt un	Must be using correct formula, with $a = 3$ and $r = -2$, or their <i>r</i> from (i) Allow M1 for 3×-2^{10} Using $r = 2$ is M0, unless this was their value in (i) Allow M1 for listing terms as far as u_{11}
	ii		A1	Obtain 3072	CWO Allow A1 BOD for $3 \times -2^{10} = 3072$ If listing terms, then need to indicate that 3072 is the required value
	ï			Examiner's comments Most candidates knew how to find the eleventh term of the GP, but many were unable to evaluate correctly the expression as it included a negative number. The most successful candidates included brackets in their expression, and then used these in their evaluation. Some candidates included brackets but ignored them in the evaluation, and too many candidates wrote the expression as 3×-2^{10} and duly evaluated this as -3072. At this level, candidates should both be able to use their calculator proficiently and should also consider whether their answer is sensible; they should be aware that a negative number to an even power should give a positive answer.	
	iii	$\frac{3(1-(-2)^{20})}{1-(-2)} = -1048575$	M1	Attempt S_{20}	Must be using correct formula, with $a = 3$ and $r = -2$, or their <i>r</i> from (i) Allow M1 for correct formula, but with no brackets around the -2 Allow M1 for attempting to sum first 20 terms

			A1	Obtain –1048575 Examiner's Comments Once again, most candidates were able to quote a correct expression for the sum of the first twenty terms, but were unable to correctly evaluate this. A few candidates gave their answer to three significant figures, not appreciating that the instruction on the front of the question paper refers to non-exact numerical answers.	$\frac{3(1+2^{10})^{\text{Sequences}}}{1+2}$ Allow M1 for $1+2$ as long as correct general formula is also seen Could also come from manually summing terms $\frac{3(12^{20})}{1-2}$ jives 1048577
		Total	5		
5	i	$u_k = 5 + 1.5(k - 1)$	M1*	Attempt <i>n</i> th term of an AP, using $a = 5$ and $d = 1.5$	Must be using correct formula, so M0 for 5 + 1.5k Allow if in terms of <i>n</i> not <i>k</i> Could attempt an <i>n</i> th term definition, giving $1.5k$ + 3.5
	i	5 + 1.5(k - 1) = 140 k = 91	M1d*	Equate to 140 and attempt to solve for <i>k</i>	Must be valid solution attempt, and go as far as an attempt at <i>k</i> Allow equiv informal methods
	i		A1	Obtain 91	Answer only gains full credit Examiner's Comments

					This proved to be a straightforward question for many candidates, and the majority gained full credit. Most candidates used the formula for the <i>n</i> th term of an arithmetic progression and another effective method was to generate an <i>n</i> th term expression for the sequence. Informal methods were rarely correct, and the other common error was to use the <i>n</i> th term as $5 + 1.5n$ or even $n +$ 1.5.
	ii	$S_{16} = \frac{120(1-0.9^{16})}{1-0.9}$	М1	Attempt to find the sum of 16 terms of GP, with $a =$ 120, $r = 0.9$	Must be using correct formula
					If > 3sf, allow answer rounding to 977.6 with no errors seen Answer only, or listing and summing 16 terms, gains full credit Examiner's Comments
	ii		A1	Obtain 978, or better	The majority of candidates were equally successful here, with solutions being mostly fully
					correct. Despite being told that it was a geometric progression, many candidates did not recognise w_n as being of the form a $\times r^{n-1}$ and instead generated the first few terms of the sequence to find the values of the first term and the common ratio, not always correctly.
	iii	$\frac{1}{2}N(10 + (N-1) \ge \frac{120}{1-0.9}$	B1	Correct sum to infinity stated	correct. Despite being told that it was a geometric progression, many candidates did not recognise w_n as being of the form a $\times r^{n-1}$ and instead generated the first few terms of the sequence to find the values of the first term and the common ratio, not always correctly. Could be 1200 or unsimplified expression
		$\frac{1}{2}N(10 + (N - 1) \times 1.5) > \frac{120}{1 - 0.9}$ $N(1.5N + 8.5) > 2400$ $3N^{2} + 17N - 4800 > 0$ $N = 38$	B1 B1	Correct sum to infinity stated	 correct. Despite being told that it was a geometric progression, many candidates did not recognise <i>wn</i> as being of the form a × <i>rⁿ⁻¹</i> and instead generated the first few terms of the sequence to find the values of the first term and the common ratio, not always correctly. Could be 1200 or unsimplified expression Any correct expression, including unsimplified

			Allow any (in)equality Geometric Sequences
			Must rearrance to a three term quadratic not
			involving brackets
			aef - not necessary to have all algebraic terms on
iii	A1	Obtain correct 3 term quadratic	the same side of the (in)equation
			Allow any (in)equality sign
			See additional guidance for acceptable methods
			May never consider the negative root
iii	M1d*	Attempt to solve quadratic	M1 could be implied by sight of 37.3, as long as
			from correct quadratic
			A0 for $N \ge 38$ or equiv in words eg 'N is at least
			38'
			Allow A1 if 38 follows =, > or \geq being used but A0
			if 38 follows < or \leq being used
			A0 if second value of N given in final answer
			Must be from an algebraic method - at least as
			far as obtaining the correct quadratic
			Examiner's Comments
			The majority of candidates could identify that the
iii	A1	Obtain $N = 38$ (must be equality)	sum to infinity was required, and correctly state
			this. There was then some uncertainty as to what
			was required on the left-hand side, with both the
			sum of the geometric progression and the <i>n</i> th
			term of the arithmetic progression being common
			errors. However many candidates could make a
			reasonable attempt at both of the summations,
			but there were a surprising number of errors
			when attempting to simplify their inequality. The
			most common errors included only multiplying
			one side by 2 in an attempt to remove the
			fraction or incorrect expansion of brackets.
1			Candidates then had to solve the quadratic with

					Geometric Sequences quadratic formula being seen, though the latter was by far the most common. A few candidates clearly anticipated that the quadratic would factorise and gave up when they realised that this was not the case. Some candidates, with an incorrect quadratic equation, simply wrote down two solutions with no method shown. In these circumstances, Examiners cannot speculate as to what method may have been used and no credit can be awarded. To gain full credit in this question, candidates had to appreciate that <i>N</i> had to be a positive integer and hence discard their negative root and round up their positive root. Some candidates spoilt an otherwise correct solution by failing to do so.
		Total	11		
6	a	Identify AP with $a = 5000$ and $d = 1500$ $\frac{n}{2}(2(5000) + (n-1)1500)$ $= n(750n + 4250)$	M1(AO3.1b) A1(AO1.1) [2]	Identification recognised by an attempt at the sum formula or <i>n</i> th term formula for an AP Or $750n^2 + 4250n$	
	Ь	$\frac{5000(1-(0.9)^n)}{1-0.9}$	M1(AO3.1b) A1(AO3.1b) A1(AO1.1)	Identification recognised by an attempt at the sum formula with <i>n</i> , <i>n</i> – 1 or <i>n</i> + 1 or with a positive sign in numerator Obtain correct unsimplified	

		Obtain 50000(1 – (0.9)°)	[3]	sum Or 50000 – 50000(0.9)"		Geometric Sequences
		Obtain 750 <i>n</i> ² + 4250 <i>n</i> – 385000 = 0	M1(AO3.1b)	Equate to 385 000 and solve a 3 term quadratic = 0	OR M1 For writing down and summing the total profit for at least the first	
	С	$n = 20 \text{ or } n = -\frac{77}{3}$	A1(AO1.1) A1(AO3.4)	BC both required Allow different methods for solving the	four years (may be implied BC) A1 For finding that the total is equal to 385 000 for $n = 20$ A1 state 20	
		State 20 years	[9]	quadratic	years	
	d	Firm A's profits continue to grow Firm B's profits eventually plateau at $250\ 000$ as $(0.9)n$ tends to 0 with large enough n	E1(AO3.4) E1(AO3.2a) [2]	Some mention about the effect	is required ct of (0.9)"	
		Total	10			

		$\frac{3x-4}{3x-9} = \frac{2}{3} \Longrightarrow x = \dots$	A1(AO1.1) [3]	formula Equate to $\frac{2}{3}$ and attempt to solve for <i>x</i>		Geometric Sequences
		Total	8			
8	i	$r^{2} = 2 \text{ hence } r = \sqrt{2}$ $\frac{a(1-\sqrt{2}^{7})}{1-\sqrt{2}} = 254$ $a = \frac{254(1-\sqrt{2})}{1-8\sqrt{2}}$	B1 M1	State $r = \sqrt{2}$ www Attempt $S_7 = 254$	B0 if from ar^7 = $2ar^5$ (but then allow all of the remaining marks) Allow decimal value (1.41) Allow B1 for r = $\pm \sqrt{2}$ Must be correct formula, using their numerical <i>r</i> , which could be exact or a decimal value	
		$a = \frac{(1 - 8\sqrt{2})(1 + 8\sqrt{2})}{a}$ $a = \frac{254(-15 + 7\sqrt{2})}{-127}$		Rearrange to obtain correct numerical expression for	Must also equate to 254 Must be in an exact form,	

				Geometric Sequences
	B1	a aef	but could	
$a = 30 - 14\sqrt{2}$			involve $(\sqrt{2})^{\prime}$ or	
			$\sqrt{128}$ rather	
			Inan 872	
	M1	$ _{SP} (12)^7 -$	value for <i>a</i>	
		$8_{1}/2$ soi	from using $r =$	
		- v	_√2	
			v	
			Equation may	
		Attempt to	no longer be	
		rationalise	fully correct	
		denominator	Must be using	
			$r = \frac{12}{2}$ only	
			7 – √2 Only Must be	
			explicit	
			evidence of	
			rationalizing	
			Could use (1	
			$+(\sqrt{2})^7$) or (1 +	
			√128)	
	A1		Allow M1 If	
			now incorrect	
			as long as of	
			form $\pm (1 -$	
	[6]		k/2) or equiv	
			MO if	
		Obtain correct	rationalising 1	
		value in surd	$-\sqrt{2}$ only (ie	
		torm	before making	
			a the subject)	

		Geometric Sequences
	Allow any	
	exact answer	
	in form p +	
	a l r	
	A0 if additional	
	answer from	
	using $r = -12$	
	A0 if final	
	answer results	
	from	
	subsequent	
	attempt to	
	simplify eq $a =$	
	$15 - 7\sqrt{2}$ (ie	
	no ISW)	
	Could use	
	variables other	
	than <i>a</i> and <i>r</i>	
	If <i>a</i> = 30 –	
	14√2	
	obtained, but	
	no evidence of	
	dealing with	
	$(\sqrt{2})^7$ or	
	rationalising	
	denominator	
	then	
	maximum of	
	B1 M1 A1 ie 3	
	marks (as the	
	given form has	
	not been	
	'shown')	

					Geometric Sequences
			Examiner's Comments		
			This proved to be the most	challenging question on the	
			paper, and only the most a	ole candidates were able to	
			provide fully correct and de	tailed solutions. Most	
			candidates were able to set	up the correct initial	
			equation of $ar^7 = 2ar^5$, but r	nany struggled to find a	
			numerical solution to this ed	quation. Despite it being	
			given in the formula book, s	ome students could not	
			quote the correct sum form	ula with an incorrect index	
			of <i>n</i> – 1 being the common	error. However, many	
			students could indeed find	the correct ratio, substitute	
			into the sum formula and re	arrange to find an	
			expressions for a. The more	e astute candidates were	
			able to make further progre	ss, by simplifying (√2)7	
			and/or rationalising the denominator, but fully correct		
			solutions were in the minori	ty.	
		Di		_	
	$r^2 = 2$ hence $r = \sqrt{2}$	BI	State <i>r</i> = √2	B0 if from <i>ar</i>	
			WWW	= 2 <i>ar</i> ⁵ (but	
	a (1 - 1 / 2 ⁷)			then allow all	
	$\frac{a(1-\sqrt{2})}{2} = 254$			of the	
	1-12			remaining	
				marks)	
				Allow decimal	
				value (1 41)	
		MI		Allow B1 for r	
п		IVI I			
	$a = \frac{254(1-\sqrt{2})}{\sqrt{2}}$		Attempt C	$-\pm\sqrt{2}$	
	$\frac{1}{1-8\sqrt{2}}$		Allempt $\mathcal{O}_7 =$	Mustha	
			204		
				correct	
				tormula, using	
				their numerical	
		Δ1		r, which could	
		AL		be exact or a	

$$a = \frac{254(1-\sqrt{2})(1+6\sqrt{2})}{(1-6\sqrt{2})(1+6\sqrt{2})}$$

$$a = \frac{254(-15+7\sqrt{2})}{-127}$$

$$a = \frac{254(-15+$$

				Geometric Sequences
		Obtain correct	M0 If	
			$- \frac{12}{2}$ only (in	
		form	before making	
		IOIIII	a the subject)	
			Allow any	
			exact answer	
			in form p +	
			q√r	
			A0 if additional	
			answer from	
			Using $r = -\sqrt{2}$	
			AU IT TINAI	
			from	
			subsequent	
			attempt to	
			simplify eq $a =$	
			$15 - 7\sqrt{2}$ (ie	
			no ISW)	
			Could use	
			variables other	
			than <i>a</i> and <i>r</i>	
			lf <i>a</i> = 30 –	
			14√2	
			obtained, but	
			no evidence of	
			dealing with $(10)^7$ or	
			$(\sqrt{2})^{\circ}$ Or	
			donominator	
			then	

				Examiner's Comments This proved to be the most paper, and only the most at provide fully correct and det candidates were able to set equation of $ar^7 = 2ar^5$, but n numerical solution to this ec- given in the formula book, s quote the correct sum form of $n-1$ being the common students could indeed find t into the sum formula and re expressions for <i>a</i> . The more able to make further progres and/or rationalising the deno-	maximum of B1 M1 A1 ie 3 marks (as the given form has not been 'shown')	Geometric Sequences
				and/or rationalising the deno	primator, but fully correct $\sqrt{2}$	
		Total	12		y.	
		$r = \frac{3}{4}$	B1(AO1.1a)			
		$u_{6} = 12/4$	M1(AO1.2)			
9	а	$u_5 = \frac{243}{64}$	A1(AO1.1)	Applying their <i>r</i> in the correct formula for u_5 with $a = 12$	Or repeated use of their <i>r</i>	
			[3]			

						Geometric Sequences
					3.796 875	
	Ь	$S_{\infty} = \frac{12}{1 - \frac{3}{4}} \text{or} S_N = \frac{12\left(1 - \left(\frac{3}{4}\right)^N\right)}{1 - \frac{3}{4}}$ $\frac{12}{1 - \frac{3}{4}} - \frac{12\left(1 - \left(\frac{3}{4}\right)^N\right)}{1 - \frac{3}{4}} \le 0.0096$ $48 - 48\left(1 - \left(\frac{3}{4}\right)^N\right) \le 0.0096 \Longrightarrow \left(\frac{3}{4}\right)^N \le 0.0002$	B1ft(AO1.1) M1(AO2.1) A1(AO2.2a)	Correctly applying formula for S_{∞} or S_N with their value of r Attempt at S_{∞} – S_N compared with 0.0096 (dependent on previous B1) AG – completely correct working	Accept any inequality or equals for this mark	
	С	$N\log\left(\frac{3}{4}\right) \le \log(0.0002) \Longrightarrow N \ge \dots$	M1(AO1.1) A1(AO2.2a)	Take logs and attempt to make Nthe N = subject	$= \log_{\frac{3}{4}}(0.0002)$	
		$N \ge 29.6 \Rightarrow N = 30$	[2]	(accept any inequality or equals		

			for this mark)		
	Total	8			
	DR $a + d = at^2$	B1 (AO 3.1a)	Correct equation for a_2 = g_3	Allow <i>a</i> , <i>a</i> ₁ , <i>g</i> ₁ or $1 + \sqrt{5}_{and}$ may be different in	
10	$a+2d+at^{\alpha}=0$	B1 (AO 3.1a)	Correct equation for <i>a</i> ₃	each term eg $a_1 + d' = g_1 l^2$	
	$a+2(at^2-a)+at^3=0$	M1 (AO 2.1) A1 (AO 2.1)	$+ g_4 = 0$ Eliminate d	Allow <i>a</i> , <i>a</i> ₁ , <i>g</i> ₁ or $1 + \sqrt{5}_{and}$ may be different in each term eg $a_1 + 2d + g_1r^3$ = 0	
	$f^{2} + 2f^{2} - 1 = 0$	B1 (AO 2.4)		Could be <i>a</i> ,	

				a_1, a_1	Geometric Sequences
		A1 (AO 1.1a)	Obtain correct cubic	or $1 + \sqrt{5}$ but	
	$(r+1)(r^2+r-1) = 0$			must now be consistent	
	$-1 \pm \sqrt{5}$		as a factor,	throughout (soi)	
	$r = -1, -\frac{1}{2}$	B1 (AO 2.4)	with justification		
	_				
	$r = \frac{-1 + \sqrt{5}}{2}$		Attempt to find all 3 roots		
	GP is convergent so – 1 < r < 1, so 2		of cubic		
	$1 + \sqrt{5}$	M1 (AO 1.1a)	For all three		
	$S_{\infty} = \frac{1+\sqrt{5}}{1-\frac{1}{2}(-1+\sqrt{5})}$		For all three		
	2	A1 (AO 2.1)			
	$2(1+\sqrt{5})$ $2(1+\sqrt{5})$				
	$-\frac{1}{2-(-1+\sqrt{5})}$ $-\frac{1}{3-\sqrt{5}}$	M1 (AO 3.1a)	Identify correct value		
			of <i>r</i> , with reason		
	$=\frac{2(1+\sqrt{5})(3+\sqrt{5})}{(2-\sqrt{5})(2-\sqrt{5})}=\frac{2(3+\sqrt{5}+3\sqrt{5}+5)}{2-5}$	A1 (AO 2.1)			
	$(3-\sqrt{5})(3+\sqrt{5})$ $9-5$				
	$2(8 + 4\sqrt{5}) = -$	[12]			
	$=\frac{2(6+4\sqrt{5})}{4}=4+2\sqrt{5}$ AG				
			Attempt sum to infinity,		

						Geometric Sequences
				using their r		
				Simplify to correct expression	Need –1 < their r < 1	
				Rationalise denominator	Must also	
				Obtain given answer www	attempt expansion	
		Total	12			
11	0	$2^{n_1-1} = 1024$	M1 (AO 1.1)			
	a	<i>n</i> ₁ = 11	[2]			
		$r_2 = 4$	B1 (AO 1.1)			
	b	$4^{n_2-1} = 1024$ $n_2 = 6$	B1 (AO 2.2a) [2]			
	С	$r_3 = \sqrt{2}$	B1 (AO 1.1)	Other correct ar score similarly, $r_3 = \sqrt[4]{2}$	nswers eg	

		$(\sqrt{2})^{n_3 - 1} = 1024$	M1 (AO 3.1a) A1 (AO 2.2a)	$((\sqrt[4]{2})^{n_3-1} = 1024$		Geometric Sequences
		$S_{21} = 1 \times \frac{(\sqrt{2})^{21} - 1}{\sqrt{2} - 1}$ = 2047 + 1023 $\sqrt{2}$ or 3490 (3 sf)	A1FT (AO 1.1) [4]	$n_3 = 41$ $S_{21} = 1 \times \frac{(\sqrt[4]{2})^{41} - 1}{\sqrt[4]{2} - 1}$		
	=			6430 (3 sf)	ft their <i>r</i> 3 and <i>n</i> 3	
		Total	8			