- i. An arithmetic progression has first term *A* and common difference *D*. The sum of its first two terms is 25 and the sum of its first four terms is 250.
 - A. Find the values of *A* and *D*.

1.

[4]

B. Find the sum of the 21st to 50th terms inclusive of this sequence.

[3]

ii. A geometric progression has first term *a* and common ratio *r*, with $r \neq \pm 1$. The sum of its first two terms is 25 and the sum of its first four terms is 250.

Use the formula for the sum of a geometric progression to show that $\frac{r^4 - 1}{r^2 - 1} = 10$ and hence

or otherwise find algebraically the possible values of *r* and the corresponding values of *a*.

[5]

- 2. *S* is the sum to infinity of a geometric progression with first term *a* and common ratio *r*.
 - i. Another geometric progression has first term 2*a* and common ratio *r*. Express the sum to infinity of this progression in terms of *S*.

[1]

ii. A third geometric progression has first term *a* and common ratio r^2 . Express, in its simplest form, the sum to infinity of this progression in terms of *S* and *r*.

[2]

- 3. The second term of a geometric progression is 24. The sum to infinity of this progression is 150. Write down two equations in *a* and *r*, where *a* is the first term and *r* is the common ratio. Solve your equations to find the possible values of *a* and *r*.
 - [5]
- 4. An arithmetic progression (AP) and a geometric progression (GP) have the same first and fourth terms as each other. The first term of both is 1.5 and the fourth term of both is 12. Calculate the difference between the tenth terms of the AP and the GP.

[5]

8.

- 5. A geometric series has first term 3. The sum to infinity of the series is 8. Find the common ratio.
- 6. The sequence of positive numbers a_1, a_2, a_3, \dots is a geometric sequence. Prove that the [3] sequence $\ln a_1$, $\ln a_2$, $\ln a_3$, ... is an arithmetic sequence.

7.

9. (See Insert for Jun18 64003.) Consider a geometric sequence in which all the terms are positive real numbers. Show that, for any three consecutive terms of this sequence, the middle one is the geometric mean of the other two. [3]

10.	(See	e Insert for H640/03. Practice 4.)	les
	Ass (a)	ume that the length of each side of the equilateral triangle shown in Fig. C1.1 is one un Find the perimeter of the second iteration, shown in Fig. C1.3.	it. [1]
	(b)	Find an expression for the perimeter of the <i>n</i> th iteration.	[3]
	(c)	Show that, as stated in line 11, the perimeter of the Koch snowflake is not finite.	[1]
11.	(See	e Insert for H640/03, Practice 4.)	
	Ass (a)	Find the area of the first iteration, shown in Fig. C1.1 is one unit of area.	[2]
	(b)	Find the increase in area between the iterations shown in Figs C1.2 and C1.3.	[1]
	(c)	Find the area of the Koch snowflake.	[4]

END OF QUESTION paper

Mark scheme

Que	stion	Answer/Indicative content		Part marks and guidance	
1	i	(A) 2 <i>A</i> + <i>D</i> = 25 oe	B1		condone lower-case <i>a</i> and <i>d</i>
	i	4A + 6D = 250 oe	B1		
	i	<i>D</i> = 50,	B1		
	i	A = - 12.5 oe	B1	Examiner's Comments Most candidates formed the correct equations and went on to solve them successfully.	
		$\frac{50}{2} \left(2 \times theirA + 49 \times theirD \right) [= 60 \ 625]$			
	i	or	M1	or $a =$ their $A + 20D$	
		$\frac{20}{2} (2 \times their A + 19 \times their D) [= 9250]$			
	i	their "S ₅₀ – S ₂₀ "	M1	$S_{30} = \frac{30}{2}(a+l)$ oe with /= their A + 49D	$S_{30} = \frac{30}{2} (2 \times their 987.5 + 29 \times their 50)$
	i	51 375 cao	A1	Examiner's Comments Many achieved full marks here. Of those who didn't, most candidates scored two marks for $S_{50} - S_{20}$ with their <i>A</i> and <i>D</i> . A few used S_{21} and just scored 1. Other	

				candidates earned the first mark for u_{21} and about half then earned the second mark for a correct formula with $n = 30$. Fortunately hardly any candidates tried to sum all 30 terms individually.	Geometric Series
	ii	$\frac{a(r^2-1)}{r-1} = 25 \text{ or } \frac{a(r^4-1)}{r-1} = 250$	B1		
	ii	$\frac{a\frac{(r^4-1)}{r-1}}{a\frac{(r^2-1)}{(r-1)}} = \frac{250}{25}$ oe	M1		allow <i>a</i> (1 + <i>i</i>) as the denominator in the quadruple- decker fraction
	ii	and completion to given result www		at least one correct interim step required	$r^2 = x$ oe may be use
	ii	use of $r^4 - 1 = (r^2 - 1)(r^2 + 1)$ to obtain $r^2 + 1 = 10$ www	M1	or multiplication and rearrangement of quadratic to obtain $r^4 - 10r^2 + 9 = 0$ oe with all three terms on one side	or M1 for valid alternative algebraic approaches eg using $a(1 + i) = 25$ and $ar^2 + ar^3 = ar^2(1 + i) = 225$
	ii	r = ± 3	A1		or B2 for all four values correct, B1 for both <i>r</i> values or both <i>a</i> values or one pair of correct values if second M mark not earned
				or A1 for one correct pair of values of <i>r</i> and <i>a</i> Examiner's Comments	
	ii	<i>a</i> = 6.25 or –12.5 oe	A1	Most earned the first mark, but then there was much toil for the second mark, which was often not earned due to wrong working or to leaving too much to the marker's imagination. Faced with solving the given statement, most opted for multiplying by r^2 -1 and were then stumped by the quartic. Careless work led to $r^2 = 10$ or 11. A good number of candidates who successfully found r neglected to find <i>a</i> . A small number of candidates produced elegant work for full marks.	
		Total	12		
2	i	2 <i>S</i> cao	B1	Examiner's Comments	

				2 <i>a</i>	Geometric Series
				Most candidates did not earn this mark: in spite of $\overline{1-r}$ being commonly seen,	
				candidates were unable to make the connection to "S". Those who did, often left their answer embedded in irrelevant working.	
	ii	$\frac{a}{1-r^2}$	M1	if M0, SC1 for $\frac{1-r}{1-r^2} \times S$ oe	
	ii	$\frac{S}{1+r} \text{ or } \frac{1}{1+r}S$	A1	Examiner's Comments Approximately three quarters of candidates made the correct initial move of $\frac{a}{1-r^2}$. A few then recognised that factorising the denominator was relevant, but only a tiny minority went on to earn the second mark.	
		Total	3		
3		<i>ar</i> = 24 (i)	B1*		allow $ar^{2-1} = 24$
		$\frac{a}{1-r} = 150$	B1*		
		correct substitution to eliminate one unknown	M1dep*	eg subst. of $a = 150(1 - r)$ or $r = \frac{150 - a}{150}$ in (i) alternatively, subst. of $a = \frac{24}{r}$ or $r = \frac{24}{a}$ n (ii)	if M0, B1 for both values of <i>r</i> and B1 for both values of a, or B1 for each pair of correct values NB $150r^2 - 150r + 24 [= 0]$ $a^2 - 150a + 3600 [= 0]$
		<i>r</i> = 0.8 or 0.2	A1	or A1 for each correct pair of values	A0 if wrongly attributed

			ignore incorrect pairing if correct values already correctly attributed	Geometric Series
	<i>a</i> = 30 or <i>a</i> = 120	A1	Examiner's Comments Most candidates wrote down the required equations, and most went on to eliminate one of the variables correctly. What followed often proved too difficult, and no further marks were earned. A number of candidates obtained negative answers for both <i>a</i> and <i>r</i> , but never suspected anything was amiss.	A0 if wrongly attributed
	Total	5		
4	1.5 + (4 - 1)d = 12 or better	M1	or $1.5 \times r^{4-1)} = 12$ or better	if first M0 B0 allow B3 for $d = 3.5$ and $r = 2$;
	<i>d</i> = 3.5	A1	<i>r</i> =2	B2 for one of these; may be embedded in calculation of difference
	<i>r</i> =2	B1	<i>d</i> = 3.5	
	1.5 × their 2 ⁹ – (1.5 + 9 × their 3.5) oe	M1	M0 for use of their S ₁₀ in either term	NB 768 – 33
	differences = 735	A1	Examiner's Comments This was done very well indeed, with many candidates scoring full marks. A few slipped up with the arithmetic and lost the accuracy marks, but the method was very well understood.	allow –735
	Total	5		
5	$\frac{3}{1-r} = 8$ $\stackrel{\Rightarrow 3 = 8(1-r)}{r = \frac{5}{8}}$	M1(AO1.1) M1(AO1.1) A1(AO1.1) [3]	Use of correct formula Clearing fraction	
	Total	3		

		MI(AO		Geometric Series
		2.5)		
	Sequence of the form ln <i>a</i> , ln <i>ar</i> , ln <i>ar</i> ²	·	Use of notation for	
			geometric sequence	
		M1(AO	5	
6	lna, lna + lnr, lna + 2lnr	3.1a)	Laws of indices used	
		E1(AO		
		2.2a)	Laws of indices used	
	Arithmetic sequence with common difference in r			
		[3]		
ľ				
	lotal	3		
	DB			
	$b^2 - 13$			
	$\frac{1}{1} = -6$			
	$1 - \frac{1}{2}$	M1(AO	Use of sum to infinity	
	b	3.1a)	to form an equation	
	$h(h^2 = 12)$			
	$\frac{b(b^2-13)}{2} = -6$	M1(AO	Starting to clear	
	b-1	3.1a)	fractions	
			Correct equation	
7	$b(b^2 - 13) = -6(b - 1)$	A1(AO	without fractions	
'		1.1)		
	$b^3 - 7b - 6 = 0$	M1(AO	Cubic with zero on	
		1.1)	one side	
	$(-1)^3 - 7 \times (-1) - 6 = 0$	M1(AO	Use of factor theorem	
		2.1)	to search for factor	
			Correct fact	
	$(b+1)(b^2 - b - 6) = 0$	A1(AO		
		1.1)		

		(b+1)(b+2)(b-3) = 0 Roots -1, -2, 3 -1 cannot be the common ratio of a geometric sequence with a sum to infinity Possible common ratios are $-\frac{1}{2}$ and $\frac{1}{3}$	M1(AO 1.1) B1(AO 2.3) A1FT(AO 3.2a) [9]	Method for solving quadratic Rejection of root that does not make sense in the context Follow through their values of <i>b</i>		Geometric Series
		Total	9			
8	a	Arithmetic sequence with $a = 50, d = 20$ $S_{24} = \frac{24}{2} (2 \times 50 + (24 - 1)20)$ = £6720	M1 (AO 1.1a) A1 (AO 1.1b) [2]	Using appropriate formula for sum of an arithmetic sequence with $a = 50$, $d = 20$ Allow full credit for any correct method Examiner's Comments Some candidates used a brute force me monthly payments and adding them. Mo arithmetic series and used the correct for	Allow for total written out in full thod, writing out the complete list of st successfully identified this as an rmula to find the sum of 24 terms.	

			Partial credit was not awarded where a candidate found the 24th term but did not then attempt to find the sum total.
b	Each month is 12% more than the previous, so multiplied by 1.12 giving a geometric sequence with $a = 50$, $r = 1.12$	E1 (AO 2.4) [1]	Clear argument must include the value 1.12 Examine's Comments Many candidates realised that the 12% increase could be achieved by multiplying by 1.12 which leads to a geometric series. The value 1.12 had to be seen in part (b) for the mark to be credited. Exemplar 2 Genous: An amount Sauce is quick to a geometric series. The value 1.12 had to be seen in part (b) for the mark to be credited. Exemplar 2 Genous: An amount Sauce is quick to a geometric series. The value is quick to a geometric series. Some candidates were not credited the mark as their answer was too vague, as in the exemplar above. All Even if 1.12 was used in part (c) this mark could not be credited if 1.12 was not seen in part (b).
c	Geometric sequence with <i>a</i> = 50, r = 1.12 $S_{24} = \frac{50(1.12^{24} - 1)}{0.12}$	M1 (AO 3.1a)	Using appropriate

	= £5907.76 which is less than Aleela	A1 (AO 1.1b) E1 (AO 2 1)	formula for sum of a geometric sequence with $a = 50$, $r = 1.12$ Allow any suitable rounding	Allow for total written out in full	Geometric Series
		[3]	earning the M marks in part (a) and (c)) Examiner's Comments Again the formula for the total of terms was The final mark was credited to candidates of the sector of the s	s needed to earn the method mark. who compared their totals and follow-	
	Tatal	6	through was available to those who had ma those who had not earned the method mar	rks in both part (a) and part (c).	
	Let the terms be $\frac{c}{r}$, <i>c</i> , <i>cr</i>	6 B1 (AO 3.1a)	Expressions for three consecutive terms of a GP (any correct form)		
9	The geometric mean of first and last is	M1 (AO 1.1)	Expression for GM of first and last term (any correct form) FT their terms		
	$\sqrt{\frac{c}{r}}cr$	E1 (AO 2.1)	AG Correct completion		

					Geometric Series
			[3]	Examiner's Comments	
		$\sqrt{\frac{c}{r}cr} = \sqrt{c^2} = c$; this is the middle term		Most candidates were able to give general expressions for three consecutive terms of a geometric series and their response progressed successfully. However, some candidates lost a mark by not correctly completing their explanation by relating to the middle term.	
		Total	3		
10	а	$\frac{16}{3}$ [units]	B1 (AO 2.2a) [1]	oe	
	b	At each iteration, the perimeter is $\frac{4}{3}$ times the previous perimeter Perimeter of <i>n</i> th iteration $= 3 \times \left(\frac{4}{3}\right)^n$	M1 (AO 3.1a) A2 (AO 1.1, 2.2a) [1]	May be a specific instance Allow A1 for 3 times a power of $\frac{4}{3}$	
	С	As $n \to \infty$, $3 \times \left(\frac{4}{3}\right)^n \to \infty$	E1 (AO 2.4) [1]	or $3 \times \left(\frac{4}{3}\right)^n$ increases without limit as <i>n</i> increases	
		Total	5		
11	а	Area of each little triangle $=\frac{1}{9}$ unit	M1 (AO 2.2a) A1 (AO	or total additional $area = \frac{1}{3}$	

	Area = $1\frac{1}{3}$ [units]	1.1)		Geometric Series
b	<u>12</u> 81	[1] B1 (AO 2.2a) [1]	$Oe \frac{4}{27}$	
с	$1 + \frac{3}{9} + \frac{4 \times 3}{9 \times 9} + \frac{4 \times 4 \times 3}{9 \times 9 \times 9} + K$ $1 + \frac{\frac{3}{9}}{1 - \frac{4}{9}}$ $\frac{8}{5} \text{ [units]}$	M1 (AO 3.1a) M1 (AO 2.2a) M1 (AO 3.1a) A1 (AO 1.1)	4 times for new number of triangles Triangle area divided by 9 Use of GP formula	
	Total	[5] 7		