<sup>1.</sup> Find the first four terms of the binomial expansion of  $\sqrt[3]{1-2x}$ . State the set of values of x for which the expansion is valid.

i. Express 
$$\frac{x}{(1+x)(1-2x)}$$
 in partial fractions.

Hence use binomial expansions to show that  $\frac{x}{(1+x)(1-2x)} = ax + bx^2 + ...,$ where *a* and *b* are constants to be determined.

State the set of values of *x* for which the expansion is valid.

Find the first three terms in the binomial expansion of  $(4+x)^{\frac{3}{2}}$ . State the set of values of x for which the expansion is valid.

i. Find the first three terms of the binomial expansion of  $\sqrt[3]{1-2x}$ . State the set of values of *x* for which the expansion is valid.

ii. Hence find *a* and *b* such that 
$$\frac{1-3x}{\sqrt[3]{1-2x}} = 1 + ax + bx^2 + .$$

[3]

[5]

5.

2.

З.

4.

ii.

Given that  $\left(1+\frac{x}{p}\right)^q = 1-x+\frac{3}{4}x^2+\dots$ , find *p* and *q*, and state the set of values of *x* for which the expansion is valid.

Sr

[7]

[5]

[5]

[6]

[3]

[1]

[6]

Find the first four terms of the binomial expansion of  $(1-2x)^{\frac{1}{2}}$  [4]

State the set of values of *x* for which the expansion is valid.

(a) Use the binomial expansion to show that  $(1-2x)^{-\frac{1}{2}} \approx 1+x+\frac{3}{2}x^2$  for sufficiently [2] small values of *x*.

- (b) For what values of x is the expansion valid?
- (c) Find the expansion of  $\sqrt{\frac{1+2x}{1-2x}}$  ascending powers of x as far as the term in  $x^2$ . [3]

(d) Use 
$$x = \frac{1}{20}$$
 in your answer to part (c) to find an approximate value for  $\sqrt{11}$ . [2]

() Express 
$$\frac{5-x}{(2-x)(1+x)}$$
 in partial fractions. [3]

(ii) Hence or otherwise find the first 3 terms of the binomial expansion of  $\frac{5-x}{(2-x)(1+x)}$  in ascending powers of *x*. [5]

## <sup>9.</sup> In this question you must show detailed reasoning.

Given that

$$(1 + ax)^n = 1 + 6x - 6x^2 + \dots,$$

where *a* and *n* are constants, find the values of *a* and *n*.

7.

8.

- 10. (See Insert for Practice2 64003.)
  - (a) Show how the substitution  $x^3 = y \frac{m}{3y}$  can be used to transform  $x^3 + mx = n$  into a quadratic equation in  $y^3$ .

(b) Show that, when m > 0, the resulting quadratic equation in  $y^3$  has distinct real roots. [2]

11. (a) Find the first four terms in the expansion of  $\left(1+\frac{x}{2}\right)^{-2}$ 

Find the first four terms in the expansion of  $\begin{pmatrix} 1 & 2 \\ 2 \end{pmatrix}$ . [3] (b) State the range of values of *x* for which this expansion is valid. [1]

- 12. (a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of  $(1 + 3x)^{-1}$ 
  - (b) State the range of values of *x* for which this expansion is valid. [1]

## END OF QUESTION paper

## [3]

## Mark scheme

| Q | uestion | Answer/Indicative content                                                                                                             | Marks | Guidance                                                                                                                                                                                                                                                |
|---|---------|---------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 |         | $\sqrt[3]{1-2x} = (1-2x)^{1/3}$                                                                                                       | B1    | $n = 1/3$ only. Do not MR for $n \neq 1/3$                                                                                                                                                                                                              |
|   |         | $=1+\frac{1}{3}(-2x)+\frac{\frac{1}{3}(-\frac{2}{3})}{2!}(-2x)^{2}+\frac{\frac{1}{3}(-\frac{2}{3})(-\frac{5}{3})}{3!}(-2x)^{3}+\dots$ | M1    | all four correct unsimplified binomial coeffs (not nCr) soi                                                                                                                                                                                             |
|   |         |                                                                                                                                       |       | condone absence of brackets only if it is clear from subsequent work that they were assumed                                                                                                                                                             |
|   |         |                                                                                                                                       | B1    | $1 - \frac{2}{3}x$ www.in this term                                                                                                                                                                                                                     |
|   |         | $=1-\frac{2}{3}x-\frac{4}{9}x^2-\frac{40}{81}x^3+\dots$                                                                               | B1    | $\cdots -\frac{4}{9}x^2$ www.in this term (not if used 2x)                                                                                                                                                                                              |
|   |         |                                                                                                                                       |       | for $(-2x)$ throughout)                                                                                                                                                                                                                                 |
|   |         |                                                                                                                                       | B1    | $\cdots -\frac{40}{81}x^3$ www.in this term                                                                                                                                                                                                             |
|   |         |                                                                                                                                       |       | If there is an error in say the third coeff of the expansion then M0 B1B0B1 is possible.                                                                                                                                                                |
|   |         |                                                                                                                                       |       | Independent of expansion<br>Allow ≤'s (valid in this case) or a combination.<br>Condone also, say, $-\frac{1}{2} <  x  < \frac{1}{2}$ but not $x < \frac{1}{2}$ or $-1 < 2x < 1$ or $-\frac{1}{2} > x > \frac{1}{2}$                                    |
|   |         | Valid for $-\frac{1}{2} < x < \frac{1}{2}$ or $ x  < \frac{1}{2}$                                                                     | B1    | Examiner's Comments                                                                                                                                                                                                                                     |
|   |         |                                                                                                                                       |       | The method for finding the binomial expansion was understood by almost all candidates. Many candidates scored full marks here. The most common errors were sign errors, the omission of the validity or the use of $2x$ throughout instead of $(-2x)$ . |
|   |         | Total                                                                                                                                 | 6     |                                                                                                                                                                                                                                                         |

$$\begin{bmatrix} 2 & 1 & \frac{x}{(1+x)(1-2x)} = \frac{A}{1+x} + \frac{B}{1-2x} \\ \Rightarrow x - A^{1-2}A + A^{1-2}A + A^{1-2}A + A^{1-2}A \\ \Rightarrow x - A^{1-2}A + A^{1-2}A + A^{1-2}A + A^{1-2}A \\ \Rightarrow x - A^{1-2}A + A^{1-2}A + A^{1-2}A \\ \Rightarrow x - A^{1-2}A + A^{1-2}A + A^{1-2}A \\ \Rightarrow x - A^{1-2}A + A^{1-2}A + A^{1-2}A \\ \Rightarrow x - A^{1-2}A + A^{1-2}A + A^{1-2}A \\ \Rightarrow x - A^{1-2}A + A^{1-2}A + A^{1-2}A \\ \Rightarrow x - A^{1-2}A + A^{1-2}A + A^{1-2}A \\ \Rightarrow x - A^{1-2}A + A^{1-2}A + A^{1-2}A \\ \Rightarrow x - A^{1-2}A + A^{1-2}A + A^{1-2}A \\ \Rightarrow x - A^{1-2}A + A^{1-2}A + A^{1-2}A \\ \Rightarrow x - A^{1-2}A + A^{1-2}A + A^{1-2}A \\ \Rightarrow x - A^{1-2}A + A^{1-2}A + A^{1-2}A \\ \Rightarrow x - A^{1-2}A + A^{1-2}A + A^{1-2}A \\ \Rightarrow x - A^{1-2}A + A^{1-2}A + A^{1-2}A \\ \Rightarrow x - A^{1-2}A + A^{1-2}A + A^{1-2}A \\ \Rightarrow x - A^{1-2}A + A^{1-2}A + A^{1-2}A \\ \Rightarrow x^{1-2}A + A^{1-2}A \\ \Rightarrow x^{1-2}A + A^{1-2}A + A^{1-2}A \\ \Rightarrow x$$

© OCR 2017.

Page 6 of 17

PhysicsAndMathsTutor.com

Binomial Expansions (Yr. 2)

|                                                                                                              | $4^{3/2} + \frac{3}{2} 4^{1/2} x + \left(\frac{3}{2}\right) \left(\frac{1}{2}\right) 4^{-1/2} \frac{x^2 \text{ Binomial Expansions (Yr. 2)}}{2! + \dots}$ (or expanding as of 4 correct)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $= 8(1 + \frac{3}{2}(\frac{1}{4}x) + \frac{3}{2}\cdot\frac{1}{2}\cdot\frac{1}{2!}(\frac{1}{4}x)^{2} + \dots$ | Correct binomial coeffs for n = $3/2$ ie 1, $3/2$ , $3/2$ . $1/2$ . $1/2$ ! Not nCr formM1Indep of coeff of xIndep of first M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| = 8 + 3x                                                                                                     | A1 8+3 <i>x</i> www                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| + 3/16 <i>x</i> <sup>2</sup>                                                                                 | A1 $\begin{array}{c} \dots + 3/16 \ x^2 \qquad \text{www} \\ \text{Ignore subsequent terms} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Valid for $-4 < x < 4$ or $ x  < 4$                                                                          | $B1 \qquad \begin{array}{l} \operatorname{accept} \leq \operatorname{s} \operatorname{or} \operatorname{a} \operatorname{combination} \operatorname{of} < \operatorname{and} \leq \operatorname{, but} \operatorname{not} -4 > x > 4,  x  > 4, \operatorname{or} \operatorname{say} \\ -4 < x \\ \operatorname{condone} - 4 <  x  < 4 \\ \operatorname{Indep} \operatorname{of} \operatorname{all} \operatorname{other} \operatorname{marks} \end{array}$ $Allow  MR  \operatorname{throughout}  \operatorname{this}  \operatorname{question}  \operatorname{for}  n = m/2  \operatorname{where}  m \in \mathbb{N},  \operatorname{and}  \operatorname{m}  \operatorname{odd}  \operatorname{and}  \operatorname{then} -1  MR  \operatorname{provided}  \operatorname{it}  \operatorname{is} \\ \operatorname{at}  \operatorname{least}  \operatorname{as}  \operatorname{difficult}  \operatorname{as}  \operatorname{the}  \operatorname{original}. \end{array}$ $B1 \qquad \begin{array}{l} \operatorname{Examiner's}  \operatorname{Comments} \\ \operatorname{Much}  \operatorname{here}  \operatorname{depended}  \operatorname{upon}  \operatorname{the}  \operatorname{candidate's}  \operatorname{ability}  \operatorname{to}  \operatorname{factorise}  \operatorname{correctly}.  \operatorname{On}  \operatorname{too}  \operatorname{many}  \operatorname{occasions}  \operatorname{the} \\ \operatorname{factor}  \operatorname{was}  \operatorname{found}  \operatorname{to}  \operatorname{be}  4  \operatorname{or}  \frac{1}{4}  \operatorname{instead}  \operatorname{of}  8.  \operatorname{The}  \operatorname{general}  \operatorname{method}  \operatorname{for}  \operatorname{expanding}  \operatorname{the}  \operatorname{binomial}  \operatorname{expansion} \\ \operatorname{was}  \operatorname{understood}  \operatorname{and}  \operatorname{the}  \operatorname{binomial}  \operatorname{coefficients}  \operatorname{were}  \operatorname{usually}  \operatorname{correct}  \operatorname{Some}  \operatorname{who}  \operatorname{had}  \operatorname{factorised}  \operatorname{correctly} \\ \operatorname{then}  \operatorname{forgot}  \operatorname{to}  \operatorname{incurect}  \operatorname{responses}  \operatorname{were}  \operatorname{also}  \operatorname{sen}  \operatorname{incurced}  \operatorname{bail}  \operatorname{the}  \operatorname{scorrect}  \operatorname{bail}  \operatorname{the}  \operatorname{scorrect}  \operatorname{bail}  \operatorname{the}  \operatorname{scorrect}  \operatorname{bail}  \operatorname{the}  \operatorname{scorrect}  \operatorname{was}  \operatorname{scorrect}  \operatorname{were}  \operatorname{usually}  \operatorname{correct}  \operatorname{bail}  \operatorname{th}  \operatorname{scorrect}  \operatorname{udet}  \operatorname{scorrect}  \operatorname{up}  \operatorname{usscorrect}  \operatorname{up}  u$ |
| Total                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4 $\frac{1}{\sqrt[3]{1-2x}} = (1-2x)^{-1/3}$                                                                 | B1 $n = -1/3$ . See below <b>SC</b> for those with $n = 1/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



|                      | Binomial Expansions (Yr. 2)                                                                                                                          |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| All three clear fro  | <b>correct unsimplified binomial</b> coefficients (not nCr) soi condone absence of brackets only if it i<br>m subsequent work that they were assumed |
| 1 + (2/3)            | X+ WWW                                                                                                                                               |
| (8/9) <i>x</i> ² v   | www in this term                                                                                                                                     |
| If there i           | s an error, in say, the third coefficient of the expansion then M0B1B0is possible                                                                    |
| SC For J             | n = 1/3 award B1 for 1 – (2/3)x and B1 for –(4/9)x <sup>2</sup> (so max 2 out of the first 4 marks)                                                  |
| Indepen<br>+ 1/2)    | dent of expansion. Accept, say, $-1/2 <  x  < 1/2$ or $-1/2 \le x < 1/2$ (must be strict inequality for                                              |
| Examine              | or's Comments                                                                                                                                        |
| The mos              | st common mistake in part (i) was to use a value of 2 rather than $-2$ as the coefficient of x in                                                    |
| number               | missed the 2! from the denominator of the $x^2$ term. While the majority of candidates used the $1 - \frac{1}{2}$                                    |
| correct              | value of <i>n</i> a small minority incorrectly used $3$ or $3$ . The range of validity of the                                                        |
| expansio<br>give nor | on was done much better thanin previous years although the most common mistake was to<br>n-strict inequalities. Other mistakes included:             |
| •                    | $\frac{-\frac{1}{2} < -x < \frac{1}{2}}{ x  > \frac{1}{2}}$                                                                                          |

|   |    |                                                                                                        |        | Examiner's Comments Binomial Expansions (Yr. 2)                                                                                                                                                                                                                                                                                                                    |
|---|----|--------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | II | $\frac{1-3x}{\sqrt[3]{1-2x}} = (1-3x)(1+\frac{2}{3}x+\frac{8}{9}x^2+)$                                 |        | In part (ii) the majority of candidates correctly multiplied their answer from part (i) with (1-3x) and simplified this expression correctly to obtain the correct values of <i>a</i> and <i>b</i> . It was concerning, however, that a number of candidates wrote<br>$(1-3x)(1+\frac{2}{3}x+\frac{8}{9}x^2+)=1+\frac{2}{3}x+\frac{8}{9}x^2-3x-2x-\frac{8}{3}x^2+$ |
|   |    |                                                                                                        |        | or even more worryingly expanded $(1-3x)^1$ as $1-3x +$ higher order terms in x.                                                                                                                                                                                                                                                                                   |
|   | ii | $=1+\frac{2}{3}x+\frac{8}{9}x^2-3x-2x^2+\dots$                                                         | M1     | Use of $(1 - 3x) \times$ their $(1 + (2/3)x + (8/9)x^2 +)$ and attempt at removal of brackets (condone absence of brackets but must have two terms in x and two terms in $x^2$ )                                                                                                                                                                                   |
|   | ii |                                                                                                        | A1ft   | Correct simplified expansion following their expansion in (i). This mark is dependent on scoring both M marks in (i) and (ii)                                                                                                                                                                                                                                      |
|   | ii | $=1-\frac{7}{3}x-\frac{10}{9}x^{2}+$                                                                   | A1     | cao or B3 www in either part <b>SC</b> following either M0 or M1, B1 for either a or b correct                                                                                                                                                                                                                                                                     |
|   |    | Total                                                                                                  | 8      |                                                                                                                                                                                                                                                                                                                                                                    |
| 5 |    | $\left(1+\frac{x}{p}\right)^{q} = 1+q\frac{x}{p}+\frac{q(q-1)}{2!}\left(\frac{x}{p}\right)^{2}+\cdots$ | M1*    | $\frac{q}{p}x \text{ or } \frac{q(q-1)}{2!} \left(\frac{x}{p}\right)^2 \text{ (soi), for example, } \frac{q}{p} = -1$                                                                                                                                                                                                                                              |
|   |    | $\frac{q}{p} = -1 \ \frac{q(q-1)}{2p^2} = \frac{3}{4}$                                                 | A1 A1  | Allow $x$ 's on both sides of equations (if correct)                                                                                                                                                                                                                                                                                                               |
|   |    | $q = -p \Rightarrow \frac{-p(-p-1)}{2p^2} = \frac{3}{4} \text{ or } \frac{q(q-1)}{2q^2} = \frac{3}{4}$ | M1dep* | Eliminating $p$ (or $q$ ) from simultaneous equations (not involving $x$ ) involving both variables oe – if M1A1A1 awarded followed by either $p$ or $q$ correct (www) this implies this M mark                                                                                                                                                                    |
|   |    | $\Rightarrow \rho = 2$                                                                                 | A1     | p = 2 www (or $q = -2$ )                                                                                                                                                                                                                                                                                                                                           |



| 7 | а | $(1-2x)^{-\frac{1}{2}} \approx 1 + \left(-\frac{1}{2}\right)(-2x) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}(-2x)^2 + \dots$ $= 1 + x + \frac{3}{2}x^2  \mathbf{AG}$ | M1(AO<br>1.1b)<br>A1(AO 2.1)<br>[2] | Correct form required; allow<br>sign errors<br>Must be correctly obtained | Binomial Expansions (Yr. 2) |
|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------|-----------------------------|
|   | b | Valid when $ x  < \frac{1}{2}$                                                                                                                                                            | E1(AO 2.3)<br>[1]                   |                                                                           |                             |
|   |   | $(1+2x)^{\frac{1}{2}} = 1 + x - \frac{1}{2}x^{2} + \dots$                                                                                                                                 | B1(AO<br>1.1a)                      |                                                                           |                             |
|   |   | $\left(1+x-\frac{1}{2}x^2\right)\left(1+x+\frac{3}{2}x^2\right)$                                                                                                                          | M1(AO<br>1.1a)                      | Product of their expansions                                               |                             |
|   |   | $= 1 + 2x + 2x^2$                                                                                                                                                                         | A1(AO<br>1.1b)                      | attempted                                                                 |                             |
|   | с | Alternative method                                                                                                                                                                        |                                     |                                                                           |                             |
|   |   | $\sqrt{\frac{1+2x}{1-2x}} = \sqrt{\frac{(1+2x)(1+2x)}{(1-2x)(1+2x)}} = \frac{1+2x}{\sqrt{1-x^2}}$                                                                                         | M1                                  | Converting to rational                                                    |                             |
|   |   | $\sqrt{1-2x}$ $\sqrt{(1-2x)(1+2x)}$ $\sqrt{1-4x^2}$                                                                                                                                       |                                     | numerator form                                                            |                             |
|   |   | $= (1+2x)\left(1+\left(-\frac{1}{2}\right)(-4x^{2})+\right)$ <sup>M1</sup>                                                                                                                | M1                                  | Expand denominator and                                                    |                             |
|   |   | $= 1 + 2x + 2x^2$                                                                                                                                                                         | A1                                  |                                                                           |                             |

|   |    |                                                                                                                                                                                       | [3]                   | Binomial Expansions (Yr. 2)                                                                                                                                                                                                                                                            |
|---|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |    | $\sqrt{\frac{1.1}{0.9}} = \frac{\sqrt{11}}{3} \approx 1 + 2 \times \frac{1}{20} + 2 \times \left(\frac{1}{20}\right)^2$                                                               | M1(AO 2.1)            | Obtaining an expression involving $\sqrt{11}$                                                                                                                                                                                                                                          |
|   | C  | $\sqrt{11} \approx 3.315$                                                                                                                                                             | A1(AO<br>2.2a)<br>[2] | Or $\frac{663}{200}$                                                                                                                                                                                                                                                                   |
|   |    | Total                                                                                                                                                                                 | 8                     |                                                                                                                                                                                                                                                                                        |
| 8 | i  | $\frac{5-x}{(2-x)(1+x)} = \frac{A}{2-x} + \frac{B}{1+x}$<br>$\Rightarrow 5-x = A(1+x) + B(2-x)$<br>$x = 2 \Rightarrow 3 = 3A, A = 1$<br>$x = -1 \Rightarrow 6 = 3B \Rightarrow B = 2$ | M1<br>A1<br>A1<br>[3] | Cover up, substitution or equating coefficients<br><b>Examiner's Comments</b><br>Part (i) was answered extremely well with the vast majority of candidates correctly expressing $\frac{5-x}{(2-x)(1+x)}$ n partial fractions.                                                          |
|   | ii | $\frac{A}{2-x} = \frac{A}{2}(1-\frac{1}{2}x)^{-1}$ $= \frac{A}{2}(1+(-1)(-\frac{1}{2}x)+\frac{(-1)(-2)}{2!}(-\frac{1}{2}x)^2+)$                                                       | B1<br>M1              | Or equivalent<br>All three correct <b>unsimplified</b> binomial coefficients (not nCr) soi <b>for either</b><br>$\frac{(-1)(-2)}{2}$ expansion i.e. 1, -1 and 2. Or<br>correct simplified coefficients seen<br>Ignore any subsequent incorrect terms – ft their <i>A</i> from (i) only |

|   |  | (1, 1, 1, 1, 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1ft       | Binomial Expansions (Yr. 2                                                                                                              |
|---|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|   |  | $=A\left(\frac{-+-x+-x}{2}+\cdots\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | Ignore any subsequent incorrect terms – ft their $B$ from (i) only                                                                      |
|   |  | $\frac{B}{1} = B(1+x)^{-1} = B(1-x+x^2+)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A1ft       | www cao – ignore any higher order terms stated – isw after correct expansion seen                                                       |
|   |  | $\frac{1+x}{5-x} = \frac{5}{2} = \frac{7}{2} x + \frac{17}{2} x^2 $ | A1         | Examiner's Comments                                                                                                                     |
|   |  | $(2-x)(1+x) = \frac{2}{2} = \frac{4}{4} + \frac{x}{8} + \frac{x}{8} + \frac{x}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | In part (ii) most candidates used their answer to part (i) in their attempt to find the $5-x$                                           |
|   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [5]        | binomial expansion of $(2-x)(1+x)$ although                                                                                             |
|   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | some candidates did (with varying degrees of success) attempt to expand $(5 - x)$                                                       |
|   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | $(2 - x)(1 + x)^{-1}$ directly. Whilst the majority of candidates correctly dealt with the expansion of $1 + x$ (and so scored at least |
|   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | two marks in this part) it was surprising how many candidates (at this level) struggled in re-writing                                   |
|   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | $\frac{1}{2-x}$ as $\frac{1}{2}\left(1-\frac{1}{2}x\right)$ .                                                                           |
|   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | some cases it was clear that candidates either did not realise or even recognise that the 2 inside the                                  |
|   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | expanded both terms correctly usually went on to score full marks.                                                                      |
|   |  | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8          |                                                                                                                                         |
|   |  | <i>na</i> = 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1(AO3.1a) |                                                                                                                                         |
|   |  | $\frac{n(n-1)}{2!}a^2 = -6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1(AO2.1)  |                                                                                                                                         |
|   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                                                                                                                         |
|   |  | 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1(AO1.1b) |                                                                                                                                         |
| 9 |  | Substitution of $a = \frac{6}{n}$ in second equation oe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1(AO1.1b) |                                                                                                                                         |
|   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1(AO1.1b) |                                                                                                                                         |
|   |  | 18(n-1) = -6n soi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1(AO1.1b) |                                                                                                                                         |

|    |   |                                                                                                       |                         | Binomial Expansions (Yr. 2) |
|----|---|-------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------|
|    |   | $n = \frac{3}{4}$                                                                                     | [6]                     |                             |
|    |   |                                                                                                       |                         |                             |
|    |   |                                                                                                       |                         |                             |
|    |   | Total                                                                                                 | 6                       |                             |
|    |   | $x^{3} = \left(y - \frac{m}{3y}\right)^{3}$                                                           |                         |                             |
|    |   | $= y^{3} - 3y^{2}\left(\frac{m}{3y}\right) + 3y\left(\frac{m}{3y}\right) - \left(\frac{m}{3y}\right)$ |                         |                             |
|    |   | $-v^{3} - mv + \frac{m^{2}}{m^{2}} - \frac{m^{3}}{m^{3}}$                                             | M1(AO1.1a)              |                             |
| 10 | а | $-y - my + \frac{3}{3y} - \frac{27y^3}{27y^3}$                                                        | A1(AO1.1)               |                             |
|    |   | $x^3 + mx = y^3 - \frac{m^3}{27y^3}$                                                                  |                         |                             |
|    |   | $y^{3} - \frac{m^{3}}{27y^{3}} = n \Longrightarrow (y^{3})^{2} - \frac{m^{3}}{27} = ny^{3}$           | E1(AO2.1)               |                             |
|    |   | This is a quadratic in y <sup>a</sup>                                                                 | [3]                     | Successful completion       |
|    |   | $\left(y^3\right)^2 - ny^3 - \frac{m^3}{27} = 0$ has distinct real roots                              |                         |                             |
|    | b | when                                                                                                  |                         |                             |
|    |   | $(-n)^2 - 4\left(-\frac{m^3}{27}\right) > 0$                                                          | M1(AO3.1a)<br>E1(AO2.1) | Use of their $b^2 - 4ac$    |

|    |   | $n^2 + \frac{4m^3}{27} > 0$ certainly true when $m > 0$                                                                     | [2]                                    | Binomial Expansions (Yr. 2)                        |
|----|---|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------|
|    |   | Total                                                                                                                       | 5                                      |                                                    |
|    |   | $1 + (-2)\frac{x}{2} + \frac{(-2)(-3)}{2!} \left(\frac{x}{2}\right)^2 + \frac{(-2)(-3)(-4)}{3!} \left(\frac{x}{2}\right)^3$ | M1<br>(AO1.1a)                         | allow sign errors and one coefficient error        |
| 11 | а | 3 . 1 .                                                                                                                     | A1 (AO1.1)                             | three out of four terms ignore extra terms correct |
|    |   | $1 - x + \frac{3}{4}x^2 - \frac{1}{2}x^3$                                                                                   | A1 (AO1.1)<br>[3]                      | all four terms correct                             |
|    | b | -2 < x < 2 oe                                                                                                               | B1 (AO2.3)<br>[1]                      |                                                    |
|    |   | Total                                                                                                                       | 4                                      |                                                    |
| 12 | а | $1 + (-1)(3x) + (-1)(-2)\frac{(3x)^2}{2!} + (-1)(-2)(-3)\frac{(3x)^3}{3!}$                                                  | M1(AO 1.1)<br>A1(AO 1.1)<br>A1(AO 1.1) | allow sign errors                                  |
|    |   | $1 - 3x + 9x^2 - 27x^3$                                                                                                     | [3]                                    | allow recovery from omission<br>of brackets        |
|    | b | $ x  < \frac{1}{3}$                                                                                                         | B1(AO 1.1)<br>[1]                      | $-\frac{1}{3} < x < \frac{1}{3}$                   |
|    |   | Total                                                                                                                       | 4                                      |                                                    |