Questions

Q1.

A car has six forward gears.

The fastest speed of the car

- in 1st gear is 28 km h⁻¹
- in 6th gear is 115 km h⁻¹

Given that the fastest speed of the car in successive gears is modelled by an **arithmetic sequence**,

(a) find the fastest speed of the car in 3rd gear.

(3)

Given that the fastest speed of the car in successive gears is modelled by a **geometric sequence**,

(b) find the fastest speed of the car in 5th gear.

(3)

(Total for question = 6 marks)

Q2.

In an arithmetic series

- the first term is 16
- the 21st term is 24
- (a) Find the common difference of the series.

(2)

(b) Hence find the sum of the first 500 terms of the series.

(2)

(Total for question = 4 marks)

Mark Scheme

Q1.

Question	Scheme	Marks	AOs
(a)	Uses $115 = 28 + 5d \implies d = (17.4)$	M1	3.1b
	Uses 28+2×"17.4"=	M1	3.4
	= 62.8 (km h ⁻¹)	A1	1.1b
		(3)	
(b)	Uses $115 = 28r^5 \Rightarrow r = (1.3265)$	M1	3.1b
	Uses $28 \times "1.3265^4" =$ or $\frac{115}{"1.3265"}$	M1	3.4
	= 86.7 (km h ⁻¹)	A1	1.1b
		(3)	
		((marks)
Notes:			

(a)

M1: Translates the problem into maths using n^{th} term = a + (n-1)d and attempts to find d

Look for either $115 = 28 + 5d \Rightarrow d = ...$ or an attempt at $\frac{115 - 28}{5}$ condoning slips

It is implied by use of d = 17.4 Note that $115 = 28 + 6d \Rightarrow d = ...$ is M0

M1: Uses the model to find the fastest speed the car can go in 3^{rd} gear using 28 + 2 "d" or equivalent. This can be awarded following an incorrect method of finding "d"

A1: 62.8 km/h Lack of units are condoned. Allow exact alternatives such as $\frac{314}{5}$

(b)

M1: Translates the problem into maths using n^{th} term = ar^{n-1} and attempts to find r It must use the 1st and 6th gear and not the 3rd gear found in part (a)

Look for either $115 = 28r^5 \Rightarrow r = ...$ o.e. or $\sqrt[5]{\frac{115}{28}}$ condoning slips.

It is implied by stating or using r = awrt 1.33

M1: Uses the model to find the fastest speed the car can go in 5th gear using $28 \times r^4$ or $\frac{115}{r_0}$ o.e.

This can be awarded following an incorrect method of finding "r"

A common misread seems to be finding the fastest speed the car can go in 3rd gear as in (a).

Providing it is clear what has been done, e.g. $u_3 = 28 \times "r^2"$ it can be awarded this mark.

A1: awrt 86.7 km/h Lack of units are condoned. Expressions must be evaluated.

Q2.

Question	Scheme	Marks	AOs
(a)	$16 + (21 - 1) \times d = 24 \Rightarrow d = \dots$	M1	1.1b
	d = 0.4	A1	1.1b
	Answer only scores both marks.		
		(2)	
(b)	$S_n = \frac{1}{2}n\{2a + (n-1)d\} \Rightarrow S_{500} = \frac{1}{2} \times 500\{2 \times 16 + 499 \times "0.4"\}$	M1	1.1b
	= 57900	A1	1.1b
	Answer only scores both marks		
		(2)	
	(b) Alternative using $S_n = \frac{1}{2}n\{a+l\}$		
	$l = 16 + (500 - 1) \times "0.4" = 215.6 \Rightarrow S_{500} = \frac{1}{2} \times 500 \{16 + "215.6"\}$	M1	1.1b
	= 57900	A1	1.1b
	(4 marks		

Notes

(a)

M1: Correct strategy to find the common difference – must be a correct method using a = 16, and n = 21 and the 24. The method may be implied by their working.

If the AP term formula is quoted it must be correct, so use of e.g. $u_n = a + nd$ scores M0

A1: Correct value. Accept equivalents e.g. $\frac{8}{20}$, $\frac{4}{10}$, $\frac{2}{5}$ etc.

(b)

M1: Attempts to use a correct sum formula with a = 16, n = 500 and their numerical d from part (a)

If a formula is quoted it must be correct (it is in the formula book)

A1: Correct value

Alternative:

M1: Correct method for the 500th term and then uses $S_n = \frac{1}{2} n \{a+l\}$ with their l

A1: Correct value

Note that some candidates are showing implied use of $u_n = a + nd$ by showing the following:

(a)
$$d = \frac{24-16}{21} = \frac{8}{21}$$
 (b) $S_{500} = \frac{1}{2} \times 500 \left\{ 2 \times 16 + 499 \times \frac{8}{21} \right\} = 55523.80952...$
This scores (a) M0A0 (b) M1A0