SEQUENCES AND SERIES

1 Expand **a** $(1+3x)^4$ **b** $(2-x)^5$ **c** $(3+10x^2)^3$ **d** $(a+2b)^5$ **e** $(x^2 - y)^3$ **f** $(5 + \frac{1}{2}x)^4$ **g** $(x + \frac{1}{r})^4$ **h** $(t - \frac{2}{r^2})^3$ 2 Find the first four terms in the expansion in ascending powers of x of **d** $(3+2x^2)^{10}$ **b** $(1 - \frac{1}{4}x)^8$ **c** $(5-x)^7$ **a** $(1+3x)^6$ 3 Find the coefficient indicated in the following expansions **a** $(1+x)^{15}$, coefficient of x^3 **b** $(1-2x)^{12}$, coefficient of x^4 **c** $(3+x)^7$, coefficient of x^2 **d** $(2-y)^{10}$, coefficient of y^5 **e** $(2+t^3)^8$, coefficient of t^{15} **f** $(1-\frac{1}{x})^9$, coefficient of x^{-3} **a** Express $(\sqrt{2} - \sqrt{5})^4$ in the form $a + b\sqrt{10}$, where $a, b \in \mathbb{Z}$. 4 **b** Express $(\sqrt{2} + \frac{1}{\sqrt{3}})^3$ in the form $a\sqrt{2} + b\sqrt{3}$, where $a, b \in \mathbb{Q}$. **c** Express $(1 + \sqrt{5})^3 - (1 - \sqrt{5})^3$ in the form $a\sqrt{5}$, where $a \in \mathbb{Z}$. **a** Expand $(1 + \frac{x}{2})^{10}$ in ascending powers of x up to and including the term in x^3 , simplifying 5 each coefficient. **b** By substituting a suitable value of x into your answer for part **a**, obtain an estimate for **i** 1.005¹⁰ **ii** 0.996¹⁰ giving your answers to 5 decimal places. **a** Expand $(3 + x)^8$ in ascending powers of x up to and including the term in x^3 , simplifying 6 each coefficient. **b** By substituting a suitable value of x into your answer for part **a**, obtain an estimate for **i** 3.001⁸ **ii** 2.995⁸ giving your answers to 7 significant figures. 7 Expand and simplify **a** $(1+10x)^4 + (1-10x)^4$ **b** $(2 - \frac{1}{3}x)^3 - (2 + \frac{1}{3}x)^3$ **d** $(1-x)(1+\frac{1}{x})^3$ c $(1+4y)(1+y)^3$ Expand each of the following in ascending powers of x up to and including the term in x^3 . 8 **a** $(1+x^2)(1-3x)^{10}$ **b** $(1-2x)(1+x)^8$ c $(1 + x + x^2)(1 - x)^6$ **d** $(1+3x-x^2)(1+2x)^7$ 9 Find the term independent of *y* in each of the following expansions. **b** $(2y - \frac{1}{2y})^{12}$ **c** $(\frac{1}{y} + y^2)^6$ **d** $(3y - \frac{1}{y^2})^9$ **a** $(y + \frac{1}{y})^8$

SEQUENCES AND SERIES

- 10 The coefficient of x^2 in the binomial expansion of $(1 + \frac{2}{5}x)^n$, where *n* is a positive integer, is 1.6
 - **a** Find the value of *n*.
 - **b** Use your value of *n* to find the coefficient of x^4 in the expansion.
- 11 Given that $y_1 = (1 2x)(1 + x)^{10}$ and $y_2 = ax^2 + bx + c$ and that when x is small, y_2 can be used as an approximation for y_1 ,
 - **a** find the values of the constants *a*, *b* and *c*,
 - **b** find the percentage error in using y_2 as an approximation for y_1 when x = 0.2
- 12 In the binomial expansion of $(1 + px)^q$, where p and q are constants and q is a positive integer, the coefficient of x is -12 and the coefficient of x^2 is 60.

Find

- **a** the value of p and the value of q,
- **b** the value of the coefficient of x^3 in the expansion.
- **13** a Expand $(3 \frac{x}{3})^{12}$ as a binomial series in ascending powers of x up to and including the term in x^3 , giving each coefficient as an integer.
 - **b** Use your series expansion with a suitable value of x to obtain an estimate for 2.998¹², giving your answer to 2 decimal places.
- **14** a Expand $(1 x)^5$ as a binomial series in ascending powers of x.
 - **b** Express $(\sqrt{3} + 1)(\sqrt{3} 2)$ in the form $A + B\sqrt{3}$, where $A, B \in \mathbb{Z}$.
 - **c** Hence express each of the following in the form $C + D\sqrt{3}$, where $C, D \in \mathbb{Z}$.
 - **i** $(\sqrt{3} + 1)^5(\sqrt{3} 2)^5$ **ii** $(\sqrt{3} + 1)^6(\sqrt{3} - 2)^5$
- **15** a Expand $(1 + \frac{x}{2})^9$ in ascending powers of x up to and including the term in x^4 . Hence, or otherwise, find
 - **b** the coefficient of x^3 in the expansion of $(1 + \frac{x}{2})^9 (1 \frac{x}{2})^9$,
 - **c** the coefficient of x^4 in the expansion of $(1 + 2x)(1 + \frac{x}{2})^9$.
- 16 The term independent of x in the expansion of $(x^3 + \frac{a}{x^2})^5$ is -80. Find the value of the constant a.
- 17 In the binomial expansion of $(1 + \frac{x}{k})^n$, where k is a non-zero constant, n is an integer and n > 1, the coefficient of x^2 is three times the coefficient of x^3 .
 - **a** Show that k = n 2.
 - Given also that n = 7,
 - **b** expand $(1 + \frac{x}{k})^n$ in ascending powers of x up to and including the term in x^4 , giving each coefficient as a fraction in its simplest form.