1.	The binomial expansion of $\left(2x + \frac{5}{x}\right)^6$ has a term which is a constant. Find this term.	[4]
2.	Find the coefficient of x^3 in the binomial expansion of $(2 - 4x)^5$.	[4]
3.	Find the coefficient of x^4 in the binomial expansion of $(5 + 2x)^7$.	[4]
4.	Find the binomial expansion of $(1 - 5x)^4$, expressing the terms as simply as possible.	[4]
5.	Find the coefficient of x^4 in the binomial expansion of $(x - 3)^5$.	[3]
6.	Expand $(2x - 3)^5$, writing each term in its simplest form.	[4]
7.	You are given that, in the expansion of $(a + bx)^5$, the constant term is 32 and the coefficient of x^3 is –1080. Find the values of <i>a</i> and <i>b</i> .	ent [5]
8.	Find the constant term in the expansion of $\left(x^2 + \frac{1}{x}\right)^{15}$.	[2]
9.	Find the binomial expansion of $(3 - 2x)^3$.	[4]
10	r , r ,	[0]

^{10.} Find the term in x^3 in the binomial expansion of $(2 + x)^5$. [2]

END OF QUESTION paper

Mark scheme

G	Question		Answer/Indicative content	Marks	Part marks and guid	dance
					condone lack of brackets;	<i>x</i> s may be omitted; eg M3 for 20 × 8 × 125
					$\begin{bmatrix} k \end{bmatrix} (2x)^3 \left(\frac{5}{x}\right)^3$	first M1 not earned if elements added not multiplied; otherwise, if in list or table bod intent to multiply
			identifying term as 3		soi (eg in list or table), condoning lack of brackets	M0 for binomial coefficient if it still
1			$20(2x)^{3}\left(\frac{5}{x}\right)_{\text{De}}^{3}$	MЗ	and M1 for $k = 20$ or eg $3 \times 2 \times 1$	has factorial notation
					or for 1 6 15 20 15 6 1 seen (eg Pascal's triangle seen, even if no attempt at expansion)	
					and M1 for selecting the appropriate term (eg may be implied by use of only $k = 20$, but this M1 is not dependent on the correct k used)	may be gained even if elements added
					or B4 for 20 000 obtained from multiplying out $\left(2x + \frac{5}{x}\right)^{6}$	
					allow SC3 for 20000 as part of an expansion	
					Examiner's Comments	
			20000	A1	A large proportion of candidates did not understand what was meant by 'a term which is constant'. A good number still found the term $20(2x)^3 \left(\frac{5}{x}\right)^3$ out did not recognise it	
					but did not recognise it as the term needed to find the constant. Even those who did know what was meant by a constant term usually wrote out the whole expansion rather than identifying which was the relevant term from the start. Brackets were often missing, leading to incorrect evaluations.	
			Total	4		
2			-2560 www	4	B3 for 2560 from correct term (NB coefficient of x^4 is 2560)	ignore terms for other powers; condone <i>x</i> ^a included;
					or B3 for neg answer following $10 \times 4 \times -64$ and then an error in multiplication	but eg 10 × 4 × -64 = 40 - 64 = -24 gets M2 only

1	1	1 1	l	I	I	Binomial Expansions (Yr. 1)
					or M2 for $10 \times 2^2 \times (-4)^3$ oe; must have multn signs or be followed by a clear attempt at multn;	condone missing brackets eg allow M2 for $10 \times 2^2 \times -4x^3$ ⁵ C ₃ or factorial notation is not sufficient but accept $5 \times 4 \times 3 \times 2 \times 1$ $2 \times 1 \times 3 \times 2 \times 1$ oe
						10 may be unsimplified, as above
					or M1 for $2^2 \times (-4)^3$ oe (condone missing brackets) or for 10 used or for 1 5 10 10 5 1 seen	M1 only for eg 10, 2^2 and $-4x^3$ seen in table with no multn signs or evidence of attempt at multn
					for those who find the coefft of x^2 instead: allow M1 for 10 used or for 1 5 10 10 5 1 seen; and a further SC1 if they get 1280, similarly for finding coefficient of x^4 as 2560	
					Examiner's Comments	
					Finding the binomial coefficient was done successfully by many candidates, but a surprising number omitted the negative sign in their answer. Virtually all the candidates managed to pick up at least one mark, usually for writing down the binomial coefficient either in Pascal's triangle or as part of an expression. Many candidates wrote down an expression involving the key elements $10, 2^2$ and $(-4)^3$, though the brackets were often omitted. It was at this point that some arithmetical errors crept in, in the attempts to calculate 10×4 $\times -64$.	[lack of neg sign in the <i>x</i> ² or <i>x</i> ⁴ terms means that these are easier and so not eligible for just a 1 mark MR penalty]
			Total	4		
					throughout, condone xs included eg (2 <i>x</i>) ⁴	annotate this question if partially correct
3			70 000 www	4		allow 4 for 70 000 x^4 www; may also include other terms in expansion. Allow marks even if wrong term selected; mark the coefficient of x^4
					M3 for $35 \times 5^3 \times 2^4$ oe or M2 for two of these elements multiplied	may be unsimplified, but do not allow 35 in factorial form unless evaluated later
					יאיב זטי נאיט טו גוופשע פופורופורנא ווועוועטוופע	or for all three elements seen
					or M1 for 35 oe or for 1 7 21 35 35 21 7 1 row of Pascal's triangle seen	together (eg in table) but not multiplied

				Examiner's Comments Many candidates were able to establish the desired product of $35 \times 5^3 \times 2^2$ in finding the binomial coefficient. There were fewer failing to cope correctly with $(2x)^4$ than in similar past questions on this topic. However, few candidates were confident enough with their number bonds, or quick mental methods such as repeated doubling, to realise that $5^3 \times 2^4$ or 125×16 could be easily evaluated as 2000. So they often attempted 35×125 etc with a distinct lack of		
		Total	4	SUCCESS.		
4		$1 - 20x + 150x^2 - 500x^3 + 625x^4 $ as final answer	4	part marks can be award final answer incorrect or r	-	for binomial coefficients, ${}^{4}C_{2}$ or factorial notation is not sufficient but accept $\frac{4 \times 3 \times 2 \times 1}{2 \times 1 \times 2 \times 1}$ oe etc
				M3 for 4 terms correct or correct except for sign en- seen then further 'simplifie correct eg seen in table b (condone eg +(-20 <i>x</i>) or + M2 for 3 terms correct or seen without correct evalue brackets missing in element must be evidence from car been used] binomial coeffin not sufficient – must show symbols by at least partial	rors or for correct answer ed' or for all terms ut not combined (-20 <i>x</i> instead of -20 <i>x</i>) for correct expansion uation of coefficients [if ents such as $(-5x)^2$ there alculation that $25x^2$ has ficients such as 4C_2 are v understanding of these	any who multiply out instead of using binomial coeffts: look at their final answer and mark as per main scheme if 3 or more terms are correct, otherwise M0
				or M1 for 1 4 6 4 1 soi, eg in expansion where powe ignored		Examiner's Comments Binomial expansion was done well in comparison with previous years. Most candidates remembered to use the correct coefficients and were comfortable multiplying them with powers of 5. There were not too many arithmetic errors.
		Total	4			
5		-15	B3(AO1.1) (AO1.1)	B2 for 15 or $5 \times (-3)^1$ or better	Do not accept ₅ C ₄ as a correct	

	1					Binomial Expansions (Yr.
			(AO1.1) [3]	OR B1 for 5 or 1 5 10 10 5 1 row of Pascal's triangle seen	element without evaluation to 5	
		Total	3			
6		$(2x)^{5} + 5(2x)^{4} (-3) + 10(2x)^{3} (-3)^{2} + 10(2x)^{2} (-3)^{3} + 5(2x)(-3)^{4} + (-3)^{5}$ $32x^{5} - 240x^{4} + 720x^{3} - 1080x^{2} + 810x - 243$	M1(AO2.1) M1(AO1.1) A1(AO1.1) A1(AO1.1) [4]	Binomial coefficents 6 terms in powers of <i>x</i> from 0 to 5 Five terms correct Six terms correct	May be unsimplified eg ⁵ C ₂ or 1 5 10 10 5 1 seen From 5 to 0	
		Total	4			<u> </u>
		a ⁵ = 32 a = 2	B1 B1	must have evidence that they have considered the constant term	NB examiners must use annotation in this part; a tick where each mark is earned is sufficient	
7		10 <i>&b</i> ³ [= -1080]	B1	B0 for $a = \pm 2$, but allow them to gain all marks for <i>b</i> if earned	B0 for eg $10a^{2}bx^{3} = -1080x^{3}$	
		$4b^3 = -108$ oe b = -3	B1 B1	may include x ³ on both sides, or (<i>bx</i>) ³ on left		

			Binomial Expansions (Yr.
[5]	and x^3 on right; may have subst their a^2 ; condone poor notation with inconsistent xs. for subst $a^2 = -1080$ oe if 0 in qn, allow B1 for 1 5 10 10 5 1 row of Pascal's triangle seen or for ${}^5C_3 = 10$	B0 for $4b^3 = -108x^3$ etc those trialling factors of -108 : Allow up to 3 marks (B0,B1,B1 if earned,B0,B1) for reaching a = 2 and $b = -3$ with trialling unless explicit reference to 32 in checking, in which case award up to full marks (in effect explicit reference showing their solution fits both constraints triggers 1 st and 4 th B1s)	
	discriminated extremely misunderstood the com being 32 and this was if a variety of ways, either the value of <i>a</i> or to ⁵ Cs. was to work with the te sometimes leading to <i>a</i> Having <i>x</i> 's on only one then ignoring them unti- also common, as was a by the loss of the negar Candidates' trialling fac consideration of the 32 values for a and b but va- marks since this went a front cover which requi-	inomial expansion question y well. Some candidates incept of the constant term then applied incorrectly in r being assigned to Another common error err bx^3 rather than $(bx)^3$ an answer $b = 27$ or -27 . side of an equation and I the last statement was a correct $b^3 = -27$ followed tive sign, leading to $b = 3$. etors of -108 (with no) often reached correct	

Total 5	
8 B B B B B B B B B B B B B	
8 A1 (AO Examiner's Comments 3003 1.1) This was a standard question for which many fully correct solutions were provided. Whilst not 15 comments [2] required, a clear justification of why	
needed may help ensure the correct answer of 3003 is obtained, and could gain partial credit if a minor error is made.	
Total 2	
9 $\left \begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$	

r			Binomial Expansions (Yr.
	$= 27 - 54x + 36x^2 - 8x^3$	A1 [4]	Multiplying their answer by third bracket At least 3 simplified terms correct All correct and simplified
			Examiner's Comments This was well answered by the majority of candidates although a significant number did not correctly use brackets round the $(-2x)$ and so lost a method mark and the accuracy marks. Some also made the mistake of writing $3^3 = 9$. Check numerical answers with a calculator.
	Total	4	
10	${}_{5}C_{3}(2)^{2}x^{3}$ 40 x^{3}	M1 (AO 1.1) A1 (AO 1.1) [2]	For ${}_5C_3(2)^2$ or correct coefficient
	Total	2	