Questions

Q1.

- (a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of
 - $\left(2-\frac{x}{2}\right)^7$, giving each term in its simplest form.
- (b) Explain how you would use your expansion to give an estimate for the value of 1.995⁷

(1)

(4)

(Total for question = 5 marks)

Q2.

(a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$\left(2-\frac{x}{16}\right)^9$$

giving each term in its simplest form.

$$f(x) = (a + bx)\left(2 - \frac{x}{16}\right)^9$$
, where *a* and *b* are constants

Given that the first two terms, in ascending powers of x, in the series expansion of f(x) are 128 and 36x,

- (b) find the value of *a*,
- (c) find the value of *b*.

(2)

(2)

(4)

(Total for question = 8 marks)

Q3.

(a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$\left(2+\frac{3x}{4}\right)^6$$

giving each term in its simplest form.

(b) Explain how you could use your expansion to estimate the value of 1.925⁶
 You do not need to perform the calculation.

(1)

(4)

(Total for question = 5 marks)

Q4.

(a) Find the first 4 terms, in ascending powers of x, in the binomial expansion of

$$(1 + kx)^{10}$$

where k is a non-zero constant. Write each coefficient as simply as possible.

Given that in the expansion of $(1 + kx)^{10}$ the coefficient x^3 is 3 times the coefficient of x,

(b) find the possible values of *k*.

(3)

(3)

(Total for question = 6 marks)

(4)

Q5.

$$g(x) = (2 + ax)^8$$
 where *a* is a constant

Given that one of the terms in the binomial expansion of g(x) is $3402x^5$

(a) find the value of *a*.

Using this value of *a*,

(b) find the constant term in the expansion of

$$\left(1 + \frac{1}{x^4}\right)(2 + ax)^8$$
(3)

(Total for question = 7 marks)

Q6.

In the binomial expansion of

$(a + 2x)^7$ where *a* is a constant

the coefficient of x^4 is 15 120

Find the value of *a*.

(Total for question = 3 marks)

Mark Scheme

Q1.

Question	Scheme	Marks	AOs
(a)	$\left(2 - \frac{x}{2}\right)^7 = 2^7 + \binom{7}{1} 2^6 \cdot \left(-\frac{x}{2}\right) + \binom{7}{2} 2^5 \cdot \left(-\frac{x}{2}\right)^2 + \dots$	M1	1.1b
	$\left(2-\frac{x}{2}\right)^7 = 128+$	B1	1.1b
	$\left(2-\frac{x}{2}\right)^7 = \dots -224x + \dots$	A1	1.1b
	$\left(2-\frac{x}{2}\right)^7 = \dots + \dots + 168x^2 (+\dots)$	A1	1.1b
		(4)	
(b)	Solve $\left(2-\frac{x}{2}\right) = 1.995$ so $x = 0.01$ and state that 0.01 would be substituted for x into the expansion	B1	2.4
	•	(1)	
		(5 marks)
	Notes		
(a) M1: Need correct binomial coefficient with correct power of 2 and correct power of x.			
Coefficients may be given in any correct form; e.g. 1, 7, 21 or 7C_0 , 7C_1 , 7C_2 or equivalent			
B1: Correct answer, simplified as given in the scheme. A1: Correct answer, simplified as given in the scheme.			

A1: Correct answer, simplified as given in the scheme.

(b) B1: Needs a full explanation i.e. to state x = 0.01 and that this would be substituted and that it is a solution of $\left(2 - \frac{x}{2}\right) = 1.995$

n	2	
ч.	~	

Question	Scheme	Marks	AOs
(a)	$\left(2 - \frac{x}{16}\right)^9 = 2^9 + \binom{9}{1}2^8 \cdot \left(-\frac{x}{16}\right) + \binom{9}{2}2^7 \cdot \left(-\frac{x}{16}\right)^2 + \dots$	M1	1.1b
	$\left(2-\frac{x}{16}\right)^9 = 512+$	B1	1.1b
	$\left(2-\frac{x}{16}\right)^9 = \dots -144x + \dots$	A1	1.1b
	$\left(2-\frac{x}{16}\right)^9 = \dots + \dots + 18x^2 (+\dots)$	A1	1.1b
		(4)	
(b)	Sets $512'a = 128 \Longrightarrow a =$	M1	1.1b
	$(a=)\frac{1}{4}$ oe	A1 ft	1.1b
		(2)	
(c)	Sets $512'b + -144'a = 36 \Rightarrow b =$	M1	2.2a
	$(b=)\frac{9}{64}$ oe	A1	1.1b
		(2)	
		(8 marks)

(a) alt	$\left(2 - \frac{x}{16}\right)^9 = 2^9 \left(1 - \frac{x}{32}\right)^9 = 2^9 \left(1 + \binom{9}{1} \left(-\frac{x}{32}\right) + \binom{9}{2} \left(-\frac{x}{32}\right)^2 + \dots\right)$	M1	1.1b
	= 512+	B 1	1.1b
	$= \dots -144x + \dots$	A1	1.1b
	$= \dots + \dots + 18x^2 (+ \dots)$	A1	1.1b

Notes

(a)
 M1: Attempts the binomial expansion. May be awarded on either term two and/or term three
 Scored for a correct binomial coefficient combined with a correct power of 2 and a correct power

of
$$\left(\pm \frac{x}{16}\right)$$
 Condone $\binom{9}{2}2^7 \cdot \left(-\frac{x^2}{16}\right)$ for term three

Allow any form of the binomial coefficient. Eg $\binom{9}{2} = {}^9C_2 = \frac{9!}{7!2!} = 36$

In the alternative it is for attempting to take out a factor of 2 (may allow 2^n outside bracket) and having a correct binomial coefficient combined with a correct power of $\left(\pm \frac{x}{32}\right)$

B1: For 512 A1: For -144xA1: For $+ 18x^2$ Allow even following $\left(+\frac{x}{16}\right)^2$ Listing is acceptable for all 4 marks (b) M1: For setting their 512a = 128 and proceeding to find a value for *a*. Alternatively they could substitute x = 0 into both sides of the identity and proceed to find a value for *a*. A1 ft: $a = \frac{1}{4}$ oe Follow through on $\frac{128}{\text{their 512}}$ (c) M1: Condone $512b \pm 144 \times a = 36$ following through on their 512, their -144 and using their value of "*a*" to find a value for "*b*" A1: $b = \frac{9}{64}$ oe

Q3.

Question	Scheme	Marks	AOs
(a)	2^6 or 64 as the constant term	B1	1.1b
	$\left(2 + \frac{3x}{4}\right)^6 = \dots + {}^6\mathrm{C}_1 2^5 \left(\frac{3x}{4}\right)^1 + {}^6\mathrm{C}_2 2^4 \left(\frac{3x}{4}\right)^2 + \dots$	M1	1.1b
	$= \dots + 6 \times 2^{5} \left(\frac{3x}{4}\right)^{1} + \frac{6 \times 5}{2} \times 2^{4} \left(\frac{3x}{4}\right)^{2} + \dots$	A1	1.1b
	$= 64 + 144x + 135x^2 + \dots$	A1	1.1b
		(4)	
(b)	$\frac{3x}{4} = -0.075 \Rightarrow x = -0.1$ So find the value of $64 + 144x + 135x^2$ with $x = -0.1$	B1ft	2.4
		(1)	
		(5 marks)

Notes (a) B1: Sight of either 2⁶ or 64 as the constant term M1: An attempt at the binomial expansion. This may be awarded for a correct attempt at either the second OR third term. Score for the correct binomial coefficient with the correct power of 2 and the correct power of $\frac{3x}{4}$ condoning slips. Correct bracketing is not essential for this M mark. Condone ${}^{6}C_{2}2^{4}\frac{3x^{2}}{4}$ for this mark A1: Correct (unsimplified) second AND third terms. The binomial coefficients must be processed to numbers /numerical expression e.g $\frac{6!}{4!2!}$ or $\frac{6 \times 5}{2}$ They cannot be left in the form ${}^{6}C_{1}$ and/or $\begin{pmatrix} 6\\ 2 \end{pmatrix}$ A1: $64 + 144x + 135x^2 + \dots$ Ignore any terms after this. Allow to be written $64, 144x, 135x^2$ (b) **B1ft:** x = -0.1 or $-\frac{1}{10}$ with a comment about substituting this into their $64 + 144x + 135x^2$ If they have written (a) as $64,144x,135x^2$ candidate would need to say substitute x = -0.1into the sum of the first three terms. As they do not have to perform the calculation allow Set $2 + \frac{3x}{4} = 1.925$, solve for x and then substitute this value into the expression from (a) If a value of x is found then it must be correct

Alternative to part (a)

$$\left(2 + \frac{3x}{4}\right)^{6} = 2^{6} \left(1 + \frac{3x}{8}\right)^{6} = 2^{6} \left(1 + {}^{6}C_{1} \left(\frac{3x}{8}\right)^{1} + {}^{6}C_{2} \left(\frac{3x}{8}\right)^{2} + \dots\right)$$

B1: Sight of either 2⁶ or 64

M1: An attempt at the binomial expansion. This may be awarded for either the second or third term. Score for the correct binomial coefficient with the correct power of $\frac{3x}{8}$ Correct bracketing is not essential for this mark. A1: A correct attempt at the binomial expansion on the second and third terms. A1: $64+144x+135x^2+...$ Ignore any terms after this.

Q4.

Question	Scheme	Marks	AOs
(a)	$(1+kx)^{10} = 1 + {10 \choose 1} (kx)^1 + {10 \choose 2} (kx)^2 + {10 \choose 3} (kx)^3 \dots$	M1 A1	1.1b 1.1b
	$= 1 + 10kx + 45k^2x^2 + 120k^3x^3$	A1	1.1b
		(3)	
(b)	Sets $120k^3 = 3 \times 10k$	B1	1.2
	$4k^2 = 1 \Longrightarrow k = \dots$	M1	1.1b
	$k = \pm \frac{1}{2}$	A1	1.1b
		(3)	
		(6 marks)

(a)

- M1: An attempt at the binomial expansion. This may be awarded for either the second or third term or fourth term. The coefficients may be of the form ${}^{10}C_1$, $\begin{pmatrix} 10\\2 \end{pmatrix}$ etc or eg $\frac{10 \times 9 \times 8}{3!}$
- A1: A correct unsimplified binomial expansion. The coefficients must be numerical so cannot be of the form ${}^{10}C_1$, $\binom{10}{2}$. Coefficients of the form $\frac{10 \times 9 \times 8}{3!}$ are acceptable for this mark. The bracketing must be correct on $(kx)^2$ but allow recovery
- A1: $1+10kx+45k^2x^2+120k^3x^3...$ or $1+10(kx)+45(kx)^2+120(kx)^3...$ Allow if written as a list.

(b)

- B1: Sets their $120k^3 = 3 \times \text{their } 10k$ (Seen or implied) For candidates who haven't cubed allow $120k = 3 \times \text{their } 10k$ If they write $120k^3x^3 = 3 \times \text{their } 10kx$ only allow recovery of this mark if x disappears afterwards.
- M1: Solves a cubic of the form $Ak^3 = Bk$ by factorising out/cancelling the k and proceeding correctly to at least one value for k. Usually $k = \sqrt{\frac{B}{A}}$
- A1: $k = \pm \frac{1}{2}$ o.e ignoring any reference to 0

Question	Scheme	Marks	AOs
(a)	$(2+ax)^8$ Attempts the term in $x^5 = {}^8C_2(ax)^5 = 448a^5x^5$	M1	1.1a
	(2+ ax)	A1	1.1b
	Sets $448a^5 = 3402 \implies a^5 = \frac{243}{32}$	M1	1.1b
	$\Rightarrow a = \frac{3}{2}$	A1	1.1b
		(4)	
(b)	Attempts either term. So allow for 2^8 or ${}^8C_4 2^4 a^4$	M1	1.1b
	Attempts the sum of both terms $2^8 + {}^8C_4 2^4 a^4$	dM1	2.1
	= 256 + 5670 = 5926	A1	1.1b
		(3)	
		(7 marks)
	Notes		
(a)			
M1: An attempt at selecting the correct term of the binomial expansion. If all terms are given then			
the correct term must be used. Allow with a missing bracket ${}^{8}C_{2}ax^{5}$ and left without the			
binomial coefficient expanded			
A1: $448a^5x^5$ Allow unsimplified but ${}^{8}C_5$ must be "numerical"			
M1: Sets their $448a^5 = 3402$ and proceeds to $\Rightarrow a^k = \dots$ where $k \in \mathbb{N}$ $k \neq 1$			

A1: Correct work leading to $a = \frac{3}{2}$

(b)

M1: Finds either term required. So allow for 2^8 or ${}^8C_4 2^4 a^4$ (even allowing with *a*)

dM1: Attempts the sum of both terms $2^8 + {}^8C_4 2^4 a^4$

A1: cso 5926

Q6.

Question	Scheme	Marks	AOs
	${}^{7}C_{4}a^{3}(2x)^{4}$	M1	1.1b
	$\frac{7!}{4!3!}a^3 \times 2^4 = 15120 \Longrightarrow a = \dots$	dM1	2.1
	<i>a</i> = 3	A1	1.1b
		(3)	
			(3 marks)

Notes:

M1: For an attempt at the correct coefficient of x⁴.

- The coefficient must have
- the correct binomial coefficient
- the correct power of a
- 2 or 2⁴ (may be implied)

May be seen within a full or partial expansion.

Accept
$${}^{7}C_{4}a^{3}(2x)^{4}, \frac{7!}{4!3!}a^{3}(2x)^{4}, \binom{7}{4}a^{3}(2x)^{4}, 35a^{3}(2x)^{4}, 560a^{3}x^{4}, \binom{7}{4}a^{3}16x^{4}$$
 etc.
or ${}^{7}C_{4}a^{3}2^{4}, \frac{7!}{4!3!}a^{3}2^{4}, \binom{7}{4}a^{3}2^{4}, 35a^{3}2^{4}, 560a^{3}$ etc.
or ${}^{7}C_{3}a^{3}(2x)^{4}, \frac{7!}{4!3!}a^{3}(2x)^{4}, \binom{7}{3}a^{3}(2x)^{4}, 35a^{3}(2x)^{4}, 560a^{3}x^{4}, \binom{7}{3}a^{3}16x^{4}$ etc.
or ${}^{7}C_{3}a^{3}2^{4}, \frac{7!}{4!3!}a^{3}2^{4}, \binom{7}{3}a^{3}2^{4}, 35a^{3}2^{4}, 560a^{3}$

You can condone missing brackets around the "2x" so allow e.g. $\frac{7!}{4!3!}a^32x^4$ An alternative is to attempt to expand $a^7\left(1+\frac{2x}{a}\right)^7$ to give $a^7\left(\dots\frac{7\times6\times5\times4}{4!}\left(\frac{2x}{a}\right)^4\dots\right)$ Allow M1 for e.g. $a^7\left(\dots\frac{7\times6\times5\times4}{4!}\left(\frac{2x}{a}\right)^4\dots\right)$, $a^7\left(\dots\binom{7}{4}\left(\frac{2x}{a}\right)^4\dots\right)$, $a^7\left(\dots35\left(\frac{2x}{a}\right)^4\dots\right)$ etc.

but condone missing brackets around the $\frac{2x}{a}$

Note that ${}^{7}C_{3}$, $\binom{7}{3}$ etc. are equivalent to ${}^{7}C_{4}$, $\binom{7}{4}$ etc. and are equally acceptable.

If the candidate attempts (a + 2x)(a + 2x)(a + 2x)... etc. then it must be a complete method to reach the required term. Send to review if necessary.

dM1: For "560" $a^3 = 15120 \Rightarrow a = \dots$ Condone slips on copying the 15120 but their "560" must be an attempt at

 ${}^{7}C_{4} \times 2$ or ${}^{7}C_{4} \times 2^{4}$ and must be attempting the <u>cube root</u> of $\frac{15120}{"560"}$. Depends on the first mark.

A1: a = 3 and no other values i.e. ± 3 scores A0

Note that this is fairly common:

$${}^{7}C_{4}a^{3}2x^{4} = 70a^{3}x^{4} \Rightarrow 70a^{3} = 15120 \Rightarrow a^{3} = 216 \Rightarrow a = 6$$

and scores M1 dM1 A0