Sequences Questions

5 The *n*th term of a sequence is u_n .

The sequence is defined by

$$u_{n+1} = pu_n + q$$

where p and q are constants.

The first three terms of the sequence are given by

$$u_1 = 200$$
 $u_2 = 150$ $u_3 = 120$

- (a) Show that p = 0.6 and find the value of q. (5 marks)
- (b) Find the value of u_4 . (1 mark)
- (c) The limit of u_n as n tends to infinity is L. Write down an equation for L and hence find the value of L.

 (3 marks)
- 3 The first term of an arithmetic series is 1. The common difference of the series is 6.
 - (a) Find the tenth term of the series. (2 marks)
 - (b) The sum of the first n terms of the series is 7400.
 - (i) Show that $3n^2 2n 7400 = 0$. (3 marks)
 - (ii) Find the value of n. (2 marks)
- 4 (a) The expression $(1-2x)^4$ can be written in the form

$$1 + px + qx^2 - 32x^3 + 16x^4$$

By using the binomial expansion, or otherwise, find the values of the integers p and q.

(3 marks)

- (b) Find the coefficient of x in the expansion of $(2+x)^9$. (2 marks)
- (c) Find the coefficient of x in the expansion of $(1-2x)^4(2+x)^9$. (3 marks)

- 5 The second term of a geometric series is 48 and the fourth term is 3.
 - (a) Show that one possible value for the common ratio, r, of the series is $-\frac{1}{4}$ and state the other value. (4 marks)
 - (b) In the case when $r = -\frac{1}{4}$, find:
 - (i) the first term; (1 mark)
 - (ii) the sum to infinity of the series. (2 marks)
- 7 (a) The first four terms of the binomial expansion of $(1+2x)^8$ in ascending powers of x are $1+ax+bx^2+cx^3$. Find the values of the integers a, b and c. (4 marks)
 - (b) Hence find the coefficient of x^3 in the expansion of $\left(1 + \frac{1}{2}x\right)(1 + 2x)^8$. (3 marks)
- 2 The nth term of a geometric sequence is u_n , where

$$u_n = 3 \times 4^n$$

- (a) Find the value of u_1 and show that $u_2 = 48$. (2 marks)
- (b) Write down the common ratio of the geometric sequence. (1 mark)
- (c) (i) Show that the sum of the first 12 terms of the geometric sequence is $4^k 4$, where k is an integer. (3 marks)
 - (ii) Hence find the value of $\sum_{n=2}^{12} u_n$. (1 mark)
- 4 An arithmetic series has first term a and common difference d.

The sum of the first 29 terms is 1102.

- (a) Show that a + 14d = 38. (3 marks)
- (b) The sum of the second term and the seventh term is 13.

Find the value of a and the value of d. (4 marks)

Sequences Answers

5(a)	150 = 200p + q $120 = 150p + q$	M1		Either equation
	120 = 150 p + q	A1		Both (condone embedded values for the M1A1)
		m1		Valid method to solve two simultaneous eqns in p and q to find either p or q
	p = 0.6	A1		AG (condone if left as a fraction)
	p = 0.6 $q = 30$	B1	5	
(b)	$u_4 = 102$	B1F√	1	Ft on $(72 + q)$
(c)	L = pL + q; $L = 0.6 L + 30$	M1		
	$L = \frac{q}{1-p}$	m1		
	L = 75	A1F√	3	Ft on 2.5q
	Tota	ıl	9	

3(a)	(Tenth term) = $a + (10-1) d$	M1		
	= 1 + 9(6) = 55	A1	2	NMS or rep. addn. B2 CAO
				SC if M0 award B1 for 6n-5 OE
(b)(i)	$S_n = \frac{n}{2} [2 + (n-1)6]$	M1		Formula for $\{S_n\}$ with either $a = 1$ or $d = 6$ substituted
	$\frac{n}{2}[2+6n-6] = 7400$	A1		Eqn formed with some expansion of brackets
	$3n^2 - 2n = 7400 \Rightarrow 3n^2 - 2n - 7400 = 0$	A1	3	CSO AG
(ii)	(3n+148)(n-50)=0	M1		Formula/factorisation OE
	$\Rightarrow n = 50$	A1	2	NMS single ans. 50 B2 CAO NMS 50 and -49.3(3) B1 CAO
	Total		7	

4(a)	$(1-2x)^4 = (1)^4 + 4(1)^3 (-2x) + 6(1^2)(-2x)^2 + [4(1)(-2x)^3 + (-2x)^4]$	M1		Any valid method as far as term(s) in x and term(s) in x^2 .
	$= [1] - 8x + 24x^2 + [-32x^3 + 16x^4]$	A1		p = -8 Accept $-8x$ even within a series.
		A1	3	$q = 24$ Accept $24x^2$ even within a series.
(b)	$x \text{ term is } \binom{9}{1} 2^8 x$	M1		OE
	Coefficient of x term is = $9 \times 2^8 = 2304$ (=k)	A1	2	Condone 2304x
(c)	$(1-2x)^4 (2+x)^9 = (1+px+)(2^9+kx)$	M1		Uses (a) and (b) oe (PI)
	$= = + kx + px(2^9) +$	M1		Multiply the two expansions to get x terms
	Coefficient of x is $k + 512p$			
	= 2304 - 4096 = - 1792	A1ft	3	ft on candidate's values of k and p . Condone $-1792x$
				SC If 0/3 award B1ft for p+k evaluated
	Total		8	

5(a)	$ar = 48; ar^3 = 3$	B1		For either, OE
	$\Rightarrow 16r^2 = 1$	M1		Elimination of a OE
	$\Rightarrow 16r^2 = 1$ $r^2 = \frac{1}{16} \Rightarrow r = -\frac{1}{4}$	A1		CSO AG Full valid completion. SC Clear explicit verification (max B2 out of 3.)
	or $r = \frac{1}{4}$	B1	4	
(b)(i)	a = - 192	В1	1	
(ii)	$\frac{a}{1-r} = \frac{a}{1-\left(-\frac{1}{4}\right)}$	M1		$\frac{a}{1-r}$ used
	$S_{\infty} = \frac{-768}{5} \ (= -153.6)$	A1ft	2	Ft on candidate's value for a . i.e. $\frac{4}{5}a$
				SC candidate uses $r = 0.25$, gives $a = 192$ and sum to infinity = 256. (max. B0 M1A1)
	Total		7	

7(a)	$(1+2x)^8$	M1		Any valid method. PI by correct value for a, b or c
	$=1+\binom{8}{1}(2x)^{1}+\binom{8}{2}(2x)^{2}+\binom{8}{3}(2x)^{3}+$			<i>a, v oi c</i>
	$= 1 + 16x + 112x^2 + 448x^3 + \dots$	A1A1		A1 for each of a, b, c
	$\{a=16, b=112, c=448\}$	A1	4	
(b)	x^3 terms from expn. of $\left(1 + \frac{1}{2}x\right) \left(1 + 2x\right)^8$			
	are cx^3 and $\frac{1}{2}x(bx^2)$	M1		Either
	$cx^3 + \frac{1}{2}x(bx^2)$	A1		b,c or candidate's values for b and c from (a)
	Coefficient of x^3 is $c + 0.5 b = 504$	A1ft	3	Ft on candidate's $(c + 0.5b)$ provided b and c are positive integers >1
	Total		7	

2(a)	$u_1 = 12 u_2 = 3 \times 4^2 = 48$	B1 B1	2	CSO AG (be convinced)
(b)	r= 4	В1	1	
(c)(i)	$ \{S_{12} = \} \frac{a(1-r^{12})}{1-r} $ $ = \frac{12(1-4^{12})}{1-r} $	M1		OE Using a correct formula with $n = 12$
	1-4	A1ft		Ft on answer for u_1 in (a) and r in (b)
	$= \frac{12(1-4^{12})}{-3} = -4(1-4^{12}) = 4^{13}-4$	A1	3	CAO Accept $k = 13$ for 4^{13} term
(ii)	$\sum_{n=2}^{12} u_n = (4^{13} - 4) - u_1$	B1	1	
	= 67108848 Total	ы	7	

4(a)	$\{S_{29} =\} \frac{29}{2} [2a + 28d]$	M1		Formula for S_n with $n = 29$ substituted and with a and d
	29 (a + 14d) = 1102	m1		Equation formed then some manipulation
	$a + 14d = \frac{1102}{29} \implies a + 14d = 38$	A1	3	CSO AG
(b)	$u_2 = a + d u_7 = a + 6d$	B1		Either expression correct
	$u_2 = a + d$ $u_7 = a + 6d$ $u_2 + u_7 = 13 \implies 2a + 7d = 13$	M1		Forming equation using $u_2 \& u_7$ both in form $a + kd$
	e.g. $21d = 63$; $3a = -12$	m1		Solving $a + 14d = 38$ with candidate's ' $2a + 7d = 13$ ' to at least stage of elimination of either a or d
	a = -4 $d = 3$	A1	4	Both correct
	Total		7	