^{1.} Prove by contradiction that there is no greatest even positive integer.

2. The first term in an arithmetic series is (5t + 3), where *t* is a positive integer. The last term is (17t + 11) and the common difference is 4. Show that the sum of the series is divisible by [7] 12 when, and only when, *t* is odd.

3. Prove algebraically that $n^3 + 3n - 1$ is odd for all positive integers *n*.

[4]

4. It is given that *n* is an integer. Prove by contradiction the following statement. n^2 is even $\Rightarrow n$ is even

[5]

5. Charlie claims to have proved the following statement.

"The sum of a square number and a prime number cannot be a square number."

(a) Give an example to show that Charlie's statement is not true.

[1]

Charlie's attempt at a proof is below.

Assume that the statement is not true.

⇒ There exist integers *n* and *m* and a prime *p* such that $n^2 + p = m^2$.

- $\Rightarrow p = m^2 n^2$
- $\Rightarrow p = (m n)(m + n)$
- $\Rightarrow p$ is the product of two integers.
- $\Rightarrow p$ is not prime, which is a contradiction.
- \Rightarrow Charlie's statement is true.

(b) Explain the error that Charlie has made.

(c) Given that 853 is a prime number, find the square number S such that S + 853 is also [4] a square number.

6.

[4]

Prove that the sum of the squares of any two consecutive integers is of the form 4k + 1, where *k* is an integer.

END OF QUESTION paper

Question		n	Answer/Indicative content	Marks	Guidance	
1			Assume that there is a greatest even positive integer $N = 2k$ N + 2 = 2k + 2 = 2(k + 1)	*E1(AO2. 1) M1(AO2. 1)	Proof must start with an assumption for contradiction	
			Which is even and $N + 2 > N$ This contradicts the assumption Therefore there can be no greatest even positive integer	dep*E1(AO2.4) [3]	There must be a statement denying the assumption for the final E1	
			Total	3		
2			(5t + 3) + 4(n - 1) = (17t + 11)	M1(AO3. 1a)	Attempt to use $a + (n - 1)d = l$	
			n = 3t + 3	A1(AO2. 1)	Obtain <i>n</i> = 3 <i>t</i> + 3	
			$S_N = \frac{1}{2} (3t+3) \{ (5t+3) + (17t+11) \}$ $S_N = \frac{1}{2} (3t+3)(22t+14) = 3(t+1)(11t+7)$	M1(AO2. 1) A1(AO2. 1)	Attempt to find sum of AP Obtain $S_N = 3(t + 1)(11t + 7)$ oe	
			When <i>t</i> is odd, $t = 2k + 1$ so	E1(AO2. 2a)	Consider S_{N} when t is odd	Allow consideration of odd and even
			$S_N = 3(2k + 2)(22t + 18)$			factors
			= 12(<i>k</i> + 1)(11 <i>k</i> + 9) hence multiple of 12	E1(AO2. 4)	Fully correct and convincing proof	
			When <i>t</i> is even, $t = 2k$ so			
			$S_N = 3(2k + 1)(22k + 7)$ hence always odd	E1(AO2. 4)	Allow worded eg 3 × odd × odd	
				[7]		
			Total	7		

Answer/Indicative content	Marks	Guidance	
If <i>n</i> is even then <i>n</i> can be written as $2m$. $n^3 + 3n - 1 = 8m^3 + 6m - 1$	E1 (AO 2.1)	Consider when <i>n</i> is even	Substitute 2 <i>m</i> or equiv Must include reasoning, including that 2 <i>m</i> represents an even number
= $2(4m^3 + 3m) - 1$ For all <i>m</i> , $2(4m^3 + 3m)$ is even, hence $2(4m^3 + 3m) - 1$ is odd	E1 (AO 2.4)	Conclude from useable form	Must be of a form where odd can be easily deduced SR E1 for If <i>n</i> is even, n^3 is even, $3n$ is even, hence $n^3 + 3n$ is even + even = even and therefore $n^3 + 3n - 1$ is even - odd = odd Each step must be justified
If <i>n</i> is odd then <i>n</i> can be written as $2m + 1$ $n^3 + 3n - 1 = 8m^3 + 12m^2 + 6m + 1 + 6m + 3 - 1$ $= 8m^3 + 12m^2 + 12m + 3$	E1 (AO 2.1)	Consider when <i>n</i> is odd	Substitute $2m + 1$ or equiv Must include reasoning, including that 2m + 1 represents an odd number
= $2(4m^3 + 6m^2 + 6m) + 3$ For all <i>m</i> , $2(4m^3 + 6m^2 + 6m)$ is even, hence $2(4m^3 + 6m^2 + 6m) + 3$ is odd	E1 (AO 2.4) [4]	Conclude from useable form	Must be of a form where odd can be easily deduced SR E1 for If <i>n</i> is odd, n^3 is odd, $3n$ is odd, hence $n^3 + 3n$ is odd + odd = even and therefore $n^3 + 3n - 1$ is even - odd = odd Each step must be justified
	Answer/Indicative content If <i>n</i> is even then <i>n</i> can be written as 2 <i>m</i> . $n^3 + 3n - 1 = 8m^3 + 6m - 1$ $= 2(4m^3 + 3m) - 1$ For all <i>m</i> , $2(4m^3 + 3m)$ is even, hence $2(4m^3 + 3m) - 1$ is odd If <i>n</i> is odd then <i>n</i> can be written as $2m + 1$ $n^3 + 3n - 1 = 8m^3 + 12m^2 + 6m + 1 + 6m + 3 - 1$ $= 8m^3 + 12m^2 + 12m + 3$ $= 2(4m^3 + 6m^2 + 6m) + 3$ For all <i>m</i> , $2(4m^3 + 6m^2 + 6m)$ is even, hence $2(4m^3 + 6m^2 + 6m) + 3$ is odd	Answer/Indicative content Marks If n is even then n can be written as 2m. $a^{3} + 3n - 1 = 8m^{3} + 6m - 1$ $(AO 2.1)$ $n^{3} + 3n - 1 = 8m^{3} + 6m - 1$ $(AO 2.1)$ $E1$ $= 2(4m^{3} + 3m) - 1$ For all $m, 2(4m^{3} + 3m)$ is even, hence $2(4m^{3} + 3m) - 1$ is odd $(AO 2.4)$ If n is odd then n can be written as $2m + 1$ $(AO 2.4)$ $n^{3} + 3n - 1 = 8m^{3} + 12m^{2} + 6m + 1 + 6m + 3 - 1 = 8m^{3} + 12m^{2} + 12m + 3$ $(AO 2.1)$ $3 - 1$ $= 8m^{3} + 12m^{2} + 12m + 3$ $(AO 2.1)$ $= 2(4m^{3} + 6m^{2} + 6m) + 3$ For all $m, 2(4m^{3} + 6m^{2} + 6m)$ is even, hence $2(4m^{3} + 6m^{2} + 6m) + 3$ is odd $E1$ $(AO 2.4)$ $[A]$ $[A]$	Answer/Indicative contentMarksGuidaIf n is even then n can be written as $2m$. $n^3 + 3n - 1 = 8m^3 + 6m - 1$ E1 $(AO 2.1)$ Consider when n is even $= 2(4m^3 + 3m) - 1$ E1 For all m, $2(4m^3 + 3m)$ is even, hence $2(4m^3 + 3m) - 1$ is oddE1 $(AO 2.4)$ Conclude from useable formIf n is odd then n can be written as $2m + 1$ $n^3 + 3n - 1 = 8m^3 + 12m^2 + 6m + 1 + 6m + 1 + 6m + 1 - 3 - 1 = 8m^3 + 12m^2 + 12m + 3$ E1 $(AO 2.1)$ Consider when n is odd $= 2(4m^3 + 6m^2 + 6m) + 3$ For all m, $2(4m^3 + 6m^2 + 6m) + 3$ is oddE1 $(AO 2.4)$ Conclude from useable form

Question		n	Answer/Indicative content	Marks	Guidance		
					substituted and rearra clearly explain that the the form $2k - 1$, which number. An alternativ be to say that for all <i>p</i> as it has a factor of 2 is odd. Simply conclu- justification would not second mark. This ca why the expression is equally convincing, so gained full credit.	anged they then eir expression is of a represents an odd e explanation would b, $2(4p^3 + 3p)$ is even hence $2(4p^3 + 3p) - 1$ ding 'odd' but with no have gained the ndidate's proof of odd when <i>n</i> is odd is this response	
			Total	4			
4			<i>n</i> ² is even.				
			Assume <i>n</i> is odd, ie <i>n</i> = 2 <i>r</i> + 1, where <i>r</i> is an int.	M1(AO 3.1a)			
			$n^2 = 4r^2 + 4r + 1$	A1(AO 1.1)			
			$= 4(r^2 + r) + 1$	M1(AO 2.1)			
			Hence n^2 is odd.	E1(AO 2.1)	Stated		
			This contradicts the original statement, hence assumption is false, hence <i>n</i> is even	E1(AO 2.2a)	All three phrases essential		
			Total	[0] 5			
			Total	5			

5 a eg 1 + 3 = 4 or 4 + 5 = 9 or 9 + 7 = 16 B1 (AO 1.1) or 25 + 11 = 36 or any correct example [1] Examiner's Comments Almost all candidates answered th correctly b If $m - n = 1$ (or -1) then $(m - n)(m + n)$ could be prime E1 (AO 2.3) or One of the factors of p could be 1 (or if $m + n$ [1] Examiner's Comments Many candidates identified the error correctly although a large variety o incorrect suggestions were seen, s "He has proved something that is fa correct, but that doesn't prove his correct, "The assumes that the stat is not true,", " p could be 0"," $m + n$ be zero.", "He hasn't chosen m and integers.", $p = m^2 - n^2$.", "He has no that m and n are square numbers."	Question	
Image: Image	5	
bIf $m - n = 1$ (or -1) then $(m - n)(m + n)$ could be primeE1 (AO 2.3)or One of the factors of p could be 1(or if $m + n$ [1]Examiner's CommentsMany candidates identified the error correctly although a large variety c incorrect.", "He has proved something that is t correct.", "He assumes that the site is not true.", " p could be 0", " $m + n$ be zero.", "He hasn't chosen m and integers.", " p is not the product of t integers.", " p is not the product of to integers.", " p is not		
b If $m - n = 1$ (or -1) then $(m - n)(m + n)$ could be prime [AO 2.3] or One of the factors of p could be 1 [1] Examiner's Comments Many candidates identified the error correctly although a large variety of incorrect suggestions were seen, s "He has proved something that is factorrect, but that doesn't prove his correct.", "He assumes that the stat is not true.", " p could be 0", " $m + n$ be zero.", "He hasn't chosen m ann integers.", p is not the product of integers.", $p = m^2 - n^2$.", "He has not that m and n are square numbers."		
[1] Examiner's Comments Many candidates identified the error correctly although a large variety of incorrect suggestions were seen, s "He has proved something that is a correct, but that doesn't prove his is correct.", "He assumes that the state is not true.", " p could be 0", " $m + n$ be zero.", "He hasn't chosen m and integers.", " p is not the product of to integers, $p = m^2 - n^2$.", "He has not that m and n are square numbers."		
Many candidates identified the error correctly although a large variety of incorrect suggestions were seen, s "He has proved something that is f correct, but that doesn't prove his correct.", "He assumes that the stat is not true.", " <i>p</i> could be 0", " <i>m</i> + <i>n</i> be zero.", "He hasn't chosen <i>m</i> and integers.", " <i>p</i> is not the product of f integers, $p = m^2 - n^2$.", "He has not that <i>m</i> and <i>n</i> are square numbers."		

Question		Answer/Indicative content	Marks	Guidance	
	C	Let $S = n^2$ \Rightarrow Other square number is $(n + 1)^2$ $\Rightarrow 853 = (n + 1)^2 - n^2 = 2n + 1$ $\Rightarrow n = 426$ $\Rightarrow S = 181476$	M1 (AO 3.1a) M1 (AO 2.2a) A1 (AO 1.1) A1 (AO 3.2a)	or Other square number is $(\sqrt{S} + 1)^2$ $\Rightarrow 853 = (\sqrt{S} + 1)^2 - S = 2\sqrt{S} + 1$ $\Rightarrow \sqrt{S} = 426$ $\Rightarrow S = 181476$ m - n = 1, m + n = 853 M1 2m = 854 M1 m = 427 n = 426 A1 $n^2 = 181476$ A1 Examiner's Comment Some candidates rec starting point was m - proceeded to obtain t (although a few square 426). Many candidate appreciate the link with attempted trial and im	853 = $m^2 - n^2$ & m - n = 1 ⇒ 853 = $m + n$ ⇒ 853 = $2n + 1$ ⇒ $n = 426$ ⇒ $S = 181476$ T & I: 426 seen M1M1A1 S = 181476 A1 S s ognised that the -n = 1. Most of these he correct answer red 427 instead of es, however, did not th part (b) and provement, without
		Total	6		
6		$n^{2} + (n + 1)^{2} = 2n^{2} + 2n + 1$ = $2n(n + 1) + 1$ Either <i>n</i> or <i>n</i> + 1 is even $\Rightarrow 2n(n + 1)$ is a multiple of 4 (or is of form 4k) $\Rightarrow n^{2} + (n + 1)^{2}$ is of the form $4k + 1$	M1 (AO3.1a) M1 (AO2.1) A1 (AO2.4) B1 (AO2.4) [4]	Attempted This form Statement including reason Statement of result, dependent on correct working	
		Total	4		·