
1. Use the trapezium rule, with 3 strips each of width 2, to estimate the value of

$$\int_{5}^{11} \frac{8}{x} \, \mathrm{d}x.$$

[4]

2.

The diagram shows part of the curve $y = -3 + 2\sqrt{x+4}$. The point P(5, 3) lies on the curve. Region A is bounded by the curve, the x-axis, the y-axis and the line x = 5. Region B is bounded by the curve, the y-axis and the line y = 3.

i. Use the trapezium rule, with 2 strips each of width 2.5, to find an approximate value for the area of region *A*, giving your answer correct to 3 significant figures.

[3]

ii. Use your answer to part (i) to deduce an approximate value for the area of region B.

[2]

iii. By first writing the equation of the curve in the form x = f(y), use integration to show that the exact area of region B is $\frac{14}{3}$.

[7]

3. i. Use the trapezium rule, with 4 strips each of width 1.5, to estimate the value of

$$\int_{4}^{10} \sqrt{2x-1} \, \mathrm{d}x$$

giving your answer correct to 3 significant figures.

[4]

ii. Explain how the trapezium rule could be used to obtain a more accurate estimate.

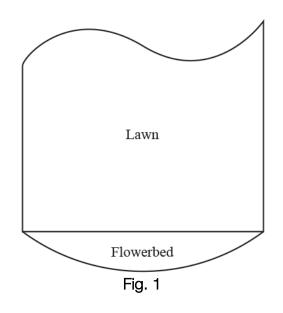
[1]

[2]

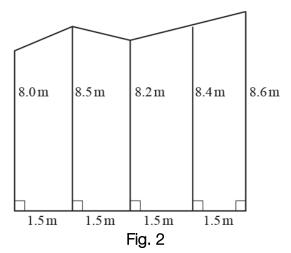
[2]

[2]

[3]


[3]

[3]


- i. The curve $y = 3^x$ can be transformed to the curve y 3^{x-2} by a translation. Give details of the translation.
 - ii. Alternatively, the curve $y = 3^x$ can be transformed to the curve $y = 3^{x-2}$ by a stretch. Give details of the stretch.
 - iii. Sketch the curve $y = 3^{x-2}$, stating the coordinates of any points of intersection with the axes.
 - iv. The point P on the curve $y = 3^{x-2}$ has y-coordinate equal to 180. Use logarithms to find the x-coordinate of P, correct to 3 significant figures.
 - v. Use the trapezium rule, with 2 strips each of width 1.5, to find an estimate for $\int_{13^{x-2}}^{4} dx$. Give your answer correct to 3 significant figures.
- (a) Use the trapezium rule, with four strips each of width 0.25, to find an approximate value for $\int_{-\frac{1}{2}}^{1} dx$
 - (b) Explain how the trapezium rule might be used to give a better approximation to the integral given in part (a). [1]
- Use the trapezium rule, with 4 strips each of width 0.2, to find an estimate for (a) $\int_0^{0.8} \cos x dx$, where x is in radians. Give your answer correct to 3 significant figures. [4]
 - (b) Explain, with the aid of a sketch, why the value from part (a) is an under-estimate. [2]
- 7. Fig. 1 shows a garden that is to be designed to include a lawn and a flowerbed.

[2]

[2]

The lawn can be modelled using four trapezia, as shown in Fig. 2. Each trapezium has a width of 1.5 m, and the lengths of the parallel sides are 8.0 m, 8.5 m, 8.2 m, 8.4 m and 8.6 m respectively.

- (a) (i) Use the trapezium rule with 4 strips to estimate the area of the lawn.
 - (ii) Given that lawn seed costs £0.49 per square metre, estimate the total cost of the lawn seed required. [1]
- (b) Suggest two limitations of this model.
- (c) Suggest one possible refinement of this model. [1]

The flowerbed can be modelled as the segment of a circle with radius 3.2 m. Fertiliser costs £0.17 per square metre.

- (d) Estimate the total cost of fertiliser required to cover the entire area of the flowerbed. [5]
- 8. (i) Use Simpson's rule with four strips to find an approximation to

$$\int_{1}^{9} \ln x \ln(x+4) dx,$$

giving your answer correct to 4 significant figures.

[4]

(ii) Deduce an approximation to

$$\int_{1}^{9} \ln(x^{-1}) \ln(x^{2} + 8x + 16) dx,$$

giving your answer correct to 4 significant figures.

[2]

9. (a) Use the trapezium rule, with four strips each of width 0.5, to estimate the value of

$$\int_{0}^{2} e^{x^{2}} dx$$

giving your answer correct to 3 significant figures.

[3]

- (b) Explain how the trapezium rule could be used to obtain a more accurate estimate. [1]
- 10. (a) Use the trapezium rule, with two strips of equal width, to show that

$$\int_{0}^{4} \frac{1}{2 + \sqrt{x}} \, \mathrm{d}x \approx \frac{11}{4} - \sqrt{2} \, . \tag{5}$$

(b) Use the substitution $x = \hat{U}$ to find the exact value of

$$\int_0^4 \frac{1}{2 + \sqrt{x}} \, \mathrm{d}x \quad . \tag{6}$$

(c) Using your answers to parts (a) and (b), show that

$$\ln 2 \approx k + \frac{\sqrt{2}}{4} ,$$

where *k* is a rational number to be determined.

[2]

END OF QUESTION paper

Q	uestion	Answer/Indicative content	Marks	Part marks and guidance		
1		$\frac{1}{2} \times 2 \times (^{8}/_{5} + 2(^{8}/_{7} + ^{8}/_{9}) + ^{8}/_{11})$	M1	Attempt the 4 correct <i>y</i> -coordinates, and no others	M0 if other <i>y</i> -values also found (unless not used) Allow decimal equivs	
			M1	Attempt correct trapezium rule, any h , to find area between $x = 5$ and $x = 11$	Correct structure required, including placing of y -values The 'big brackets' must be seen, or implied by later working – this may not be clear if using $h = 2$ so allow BOD for eg $\frac{1}{2} \times 2 \times {8 \choose 5} + \frac{8}{11} + 2{8 \choose 7} + \frac{8}{9}$ Could be implied by stating general rule in terms of y_0 etc, as long as these have been attempted elsewhere and clearly labelled Could use other than 3 strips as long as of equal width Using x -values is M0 Can give M1, even if error in evaluating y -values as long correct intention is clear Allow BoD if first or last y -value incorrect, unless clearly from an incorrect x -value	
			M1	Use correct <i>h</i> (soi) for their <i>y</i> -values (must have equally spaced <i>x</i> -values), to find area between <i>x</i> = 5 and <i>x</i> = 11	Must be in attempt at trap rule, not Simpson's rule As $h = 2$, allow BOD if ½ × 2 not seen explicitly Allow if muddle over placing y-values, including duplication (but M0 for x -values) Allow if ½ missing Allow other than 3 strips, as long as h is consistent	

Qu	Question Answer/I		Answer/Indicative content	Marks	Part marks and guidance	
			= 6.39	A1	Obtain 6.39, or better Examiner's Comments This was a straightforward start to the paper and most candidates gained full marks on the question. Some candidates lost the final mark by failing to work to the required degree of accuracy throughout. Candidates are strongly advised to use exact values in their calculations rather than truncated decimals. Candidates also lost marks through using two strips of width 3, rather than the required three strips of width 2, but they were still able to gain some credit. There were very few candidates who first attempted integration, which is an improvement on previous series.	Allow answers in the range [6.390, 6.391] if > 3sf Answer only is 0/4 Using 2 strips of width 3 is M0M1M1 and not a misread Using the trap rule on result of an integration attempt is 0/4 – this includes functions such as 8x even if integration is not explicit Using 3 separate trapezia can get full marks – if other than 3 trapezia then mark as above However, using only one trapezium is 0/4
			Total	4		

Qı	uestion	Answer/Indicative content	Marks	Part marks and guidance		
2	i	0.5 × 2.5 × (1 + 2(-3 + 2√6.5) + 3)	M1*	Attempt <i>y</i> -values at <i>x</i> = 0, 2.5, 5 only	M0 if additional <i>y</i> -values found, unless not used y_1 can be exact or decimal (2.1 or better) Allow M1 for using incorrect function as long as still clearly <i>y</i> -values that are intended to be the original function eg $-3 + 2\sqrt{x} + 4$ (from $\sqrt{(x + 4)} = \sqrt{x} + \sqrt{4}$)	
	i	= 10.2	M1d*	Attempt correct trapezium rule, inc <i>h</i> = 2.5	Fully correct structure reqd, including placing of <i>y</i> -values The 'big brackets' must be seen, or implied by later working Could be implied by stating general rule in terms of <i>y</i> ₀ etc, as long as these have been attempted elsewhere and clearly labelled Using <i>x</i> -values is M0 Can give M1, even if error in evaluating <i>y</i> -values as long correct intention is clear	
	i		A1	Examiner's Comments Candidates were familiar with the trapezium rule and the majority were able to apply it accurately to the given situation. A surprising minority rounded the final answer to 10.3 rather than 10.2. This could be ignored provided that a correct, more accurate, answer had been seen previously. Slips in calculating the <i>y</i> values were condoned, as long as there was sufficient working to convey the correct intent.	Allow answers in the range [10.24, 10.25] if > 3sf A0 if exact surd value given as final answer Answer only is 0/3 Using 2 separate trapezia can get full marks Using anything other than 2 strips of width 2.5 is M0 Using the trapezium rule on result of an integration attempt is 0/3	
	ii	(5 × 3) – 10.2 = 4.8	M1	Attem pt area of r ectangle - their (i)	As long as 0 < their (i) < 15	

Question	Answer/Indicative content	Marks	Part marks and guidance		
ii		A1FT	Obtain 4.8, or better Examiner's Comments The overwhelming majority of candidates gained both of the marks available, especially as full credit could still be awarded following an incorrect result to part (i).	Allow for exact surd value as well Allow answers in range [4.75, 4.80] if > 2sf	
iii	$x = \frac{1}{4} (y^2 + 6y - 7)$	M1	Attempt to write as $x = f(y)$	Must be correct order of operations, but allow slip with inverse operations eg $+/-$, and omitting to square the $\frac{1}{2}$ Allow $y^2 + 9$ from an attempt to square $y + 3$, even if $(y + 3)^2$ is not seen explicitly first Allow maximum of 1 error	
		A1	Obtain $x = \frac{1}{4}(y^2 + 6y - 7)$ aef	Allow A1 as soon as any correct equation seen in format $x = f(y)$, eg $x = \frac{1}{4}(y+3)^2 - 4$ or $x = \frac{1}{4}(y^2 + 6y + 9) - 4$, and isw subsequent error	

Qı	uestion	Answer/Indicative content	Marks	Part marks and guidance		
	iii	$area = \left[\frac{1}{12}y^3 + \frac{3}{4}y^2 - \frac{7}{4}y\right]_1^3$	M1*	Attempt integration of f(y)	Expand bracket and increase in power by 1 for at least two terms (allow if constant term disappears) Independent of rearrangement attempt so M0M1 is possible Can gain M1 if their $f(y)$ has only two terms, as long as both increase in power by 1 Allow M1 for $k(y+3)^3$, any numerical k , as the integral of $(y+3)^2$ or M1 for $k(y+3)^3$ from $(\frac{1}{2}(y+3))^3$ from	
	iii		A1	Obtain $\frac{1}{12}y^3 + \frac{3}{4}y^2 - \frac{7}{4}y$ aef	Or $\frac{1}{12}(y+3)^3 - 4y$ A0 if constant term becomes $-\frac{7}{4}x$ not $-\frac{7}{4}y$	
	iii		B1	State or imply limits are <i>y</i> = 1, 3	Stated, or just used as limits in definite integral Allow B1 even if limits used incorrectly (eg wrong order, or addition) Allow B1 even if constant term is - \frac{7}{4} X(or their cx)	

Question	Answer/Indicative content	Marks	Part marks a	nd guidance
ii	$= \frac{15}{4} - \left(-\frac{11}{12}\right)$	M1d*	Attempt correct use of limits	Correct order and subtraction Allow M1 (BOD) if <i>y</i> limits
				used in $-\frac{7}{4}x$ (or their cx), but M0 if $x = 0$, 5 used Minimum of two terms in y Only term allowed in x is their c becoming cx
				Allow processing errors eg
				$(\frac{1}{12} \times 3)^3$ fo $\frac{1}{12} \times 3^3$
				Answer is given so M0 if $\frac{14}{3}$ appears with no evidence of use of limits Minimum working required
				is $\frac{15}{4} + \frac{11}{12}$ Allow M1 if using decimals
				(0.92 or better fo $\frac{11}{12}$) M0 if using lower limit as $y = 0$, even if $y = 3$ is also used Limits must be from attempt at y -values, so M0 if using 0 and 5

Question	Answer/Indicative content	Marks	Part marks a	nd guidance
	$=\frac{14}{3}$ AG	A1	Obtain 14/3 Examiner's Comments This proved to be a suitably challenging end to the paper, with the most able candidates gaining full credit but the weaker ones struggling to make any kind of progress. Most candidates could attempt to change the subject of the equation but weak algebra skills meant that the result was not always the required equation. Most candidates were then able to make a reasonable attempt at the integration, with the most common error being for the constant term to be integrated with respect to <i>x</i> rather than <i>y</i> . There was a straightforward mark for identifying that the limits were 1 and 3, and candidates then had to use this to attempt the required area. Only the most able candidates were able to provide a convincing demonstration that the area of the region was indeed	Must come from exact working ie fractions or recurring decimals - correct notation required so A0 for 0.9166 A0 if $-\frac{7}{4}x$ seen in solution SR for candidates who find the exact area by first integrating onto the <i>x</i> -axis: B4 obtain area between curve and <i>x</i> -axis as $10\frac{1}{3}$ B1 subtract from 15 to obtain $\frac{14}{3}$ And, if seen in the solution, M1A1 for $x = f(y)$ as above
	Total	12		

Qı	uestion	Answer/Indicative content	Marks	Part marks and guidance		
3	i	$0.5 \times 1.5 \times (\sqrt{7} + 2(\sqrt{10} + \sqrt{13} + \sqrt{16}) + \sqrt{19})$	B1	State the 5 correct <i>y</i> -values, and no others	B0 if other <i>y</i> -values also found (unless not used) Allow for unsimplified, even if subsequent error made Allow decimal equivs	
	i		M1*	Attempt to find area between $x = 4$ and $x = 10$, using $k(y_0 + y_n + 2(y_1 + + y_{n-1}))$	Correct placing of y -values required y -values may not necessarily be correct, but must be from attempt at using correct x -values (allow 7, 10 etc ie no $$) The 'big brackets' must be seen, or implied by later working Could be implied by stating general rule in terms of y_0 etc, as long as these have been attempted elsewhere and clearly labelled Could use other than 4 strips as long as of equal width (but M0 for just one strip)	
	i		M1d*	Use <i>k</i> = 0.5 × 1.5 soi	Or $k = 0.5 \times h$, where h is consistent with the number of strips used	

Question Answer/Indicative content	n Answer/Indicative content Marks Part ma		s and guidance	
i = 21.4	A1	Examiner's Comments This question was generally very well done, with the majority of the candidates gaining full marks. Candidates generally showed their method clearly, though the brackets were omitted in some solutions, resulting in an incorrect evaluation of their intended expression. Candidates also need to be careful when copying their work from one line to the next; it was not uncommon to see √19 become √9. Another common slip was for √16 to be evaluated as 4 but then used as √4. In an improvement from previous sessions, there were very few candidates who first attempted to integrate the function before applying the trapezium rule.	Allow answers in the range [21.40, 21.41] if > 3sf Answer only is 0/4 Using the trap rule on result of an integration attempt is 0/4, even if integration is not explicit Using 4 separate trapezia can get full marks Using other than 4 separate trapezia (but not just 1) can get M2, if done correctly	

Question	Answer/Indicative content	Marks	Part marks and guidance		
ii	Use more strips / narrower strips	B1	Any reference to increasing no of strips or reducing width of strips Examiner's Comments The vast majority of candidates gained a mark for either identifying that more strips could be used, or identifying that the width of the strips could be reduced. Benefit of doubt was given to those candidates who gave both reasons, but seemed to think that they were mutually exclusive. The most common error was for candidates to justify why it was inaccurate, referring to it being an underestimate, rather than focusing on the actual question posed.	No need to explicitly state that it is over the same interval Ignore any reference to under- / over-estimate Ignore any attempts at sketching the curve Ignore any irrelevant comments, but penalise contradictory statements eg use more strips, which are wider Could give numerical example eg 'use 6 strips', but if giving both width and no of strips then must give total width of 6	
	Total	5			

Question	Answer/Indicative content	Marks	Part marks and guidance	
4	2 (units) in the positive <i>x</i> -direction	M1	Correct direction	Identify that the translation is in the <i>x</i> -direction (either positive or negative, so M1 for eg '2 in negative <i>x</i> -direction') Allow any terminology as long as intention is clear, such as in/on/along the <i>x</i> -axis Ignore the magnitude

Question	Answer/Indicative content	tent Marks Part marks ar		and guidance
		A1	Fully correct description	Must have correct magnitude and correct direction, using precise language - such as 'in the x-direction', 'parallel to the x-axis', 'horizontally' or 'to the right' A0 for in/on/along the x-axis etc Allow M1A1 for '2 in the x -direction' as positive is implied A0 for 'factor 2' 'Units' is not required, but A0 for 'places', 'spaces', 'squares' etc Allow in vector notation as well, so M1 for (*) and M1A1 for (*) Examiner's Comments Most candidates could correctly identify that it would be a horizontal translation, thus gaining one mark. To gain the second mark, candidates had to state the correct direction and magnitude. The most efficient and convincing method was to use a vector to describe the translation, and a number of candidates did so. However, most candidates opted to use a worded description instead and a number of those failed to gain the final mark as they did not use mathematically precise language. Phrases such as 'in the x-axis' were condoned for the first mark, but were not given full credit.

Questio	on	Answer/Indicative content	Marks	Part marks a	nd guidance
	ii	sf $\frac{1}{9}$ in the <i>y</i> -direction	M1	Correct direction, with sf of	Identify that the stretch is in the <i>y</i> -direction, with a scale factor of either $\frac{1}{9}$ or 9 (or equiv in index notation)
					Allow just ¹ / ₉ or 9, with no mention of 'scale factor' Allow exact decimal equiv
					for $\frac{1}{9}$ Allow any terminology as long as the intention is clear, such as in/on/along the <i>y</i> -axis

Question	Answer/Indicative content	Marks	Part marks	and guidance
ii		A1	Fully correct description	Must have correct scale factor and correct direction using precise language - such as 'in the y-direction' 'parallel to the y-axis' or 'vertically' A0 for in/on/along the y-axetc Must now have 'scale factor' or 'factor' Allow 'positive y-direction' (not incorrect as graph is wholly above x-axis) Examiner's Comments Describing the transformation by means of a stretch proved to be must more challenging and only the most able candidates gained any credit at all on this part. Whilst some candidates used index manipulation to rewrite the equation in the form y = k 3x others generated a table of values in an attempt to deduce the effect of the stretch. Otherwise correct solutions were sometimes spoiled by the careless use of language, including both omitting to describe 1/9 as a scale factor and also an imprecise description of the direction.

Question	Answer/Indicative content	Marks	Part marks	s and guidance
iii		B1*	Correct sketch, in both quadrants	Curve must tend towards the negative <i>x</i> -axis, but not touch or cross it, nor a significant flick back upwards If from plotted points then there must be enough of the graph shown to demonstrate the correct general shape, including the negative <i>x</i> -axis being an asymptote Ignore any numerical values given
iii	intersect at $(0, \frac{1}{9})$	B1d*	State $(0, \frac{1}{9})$	Condone $x = 0$, $y = \frac{1}{9}$ as an alternative, but $x = 0$ must be stated explicitly rather than implied Allow no brackets around the coordinates Allow exact decimal equiv for $\frac{1}{9}$ Allow just $\frac{1}{9}$ as long as marked on the <i>y</i> -axis Allow BOD for $(\frac{1}{9}, 0)$ on <i>y</i> -axis, but not if just stated Just being seen in a table of values is not sufficient Ignore any other labelled coordinates Examiner's Comments There were a number of carefully drawn and correct exponential graphs, and many of those with an acceptable graph also correctly gave the <i>y</i> -intercept. However too many candidates, who clearly knew the general shape of the curve, were unable to convey their intention in a sufficiently convincing manner. A

Qı	uestion	Answer/Indicative content	Marks	Part marks	and guidance
					number of attempts had neither ruled nor labelled axes. A lack of care when sketching the curve resulted in errors such as vertical asymptotes to the right, horizontal asymptotes nowhere near the <i>x</i> -axis and curves that had a distinct minimum point in the second quadrant. All of these errors resulted in the mark not being awarded. Several candidates did not extend their sketched curve into the second quadrant, and many candidates did not know the shape at all.
	iv	$\log 3^{x-2} = \log 180 \text{ (or } x-2 = \log_3 180)$ $(x-2)\log 3 = \log 180$ $x-2 = 4.7268$ $x = 6.73$	M1*	Introduce logs and drop power	Can use logs to any base, as long as consistent on both sides, and allow no explicit base as well The power must also be dropped for the M1 Brackets must be seen around the $(x-2)$, or implied by later working If taking \log_3 then base must be explicit
	iv		M1d*	Attempt to solve for x	Correct order of operations, and correct operations so M0 for $\log_3 180 - 2$ M0 if logs used incorrectly $eg x - 2 = \log(\frac{180}{8})$

Question Answer/Indicativ

Question	Answer/Indicative content	Marks	Part marks a	nd guidance
V	$0.5 \times 1.5 \times \{3^{-1} + 2 \times 3^{0.5} + 3^{2}\}$ = 9.60	B1	State the 3 correct <i>y</i> -values, and no others	B0 if other <i>y</i> -values also found (unless not used) Allow for unsimplified, even if subsequent error made Allow decimal equivs
	Enter text here.	M1	Attempt use of correct trapezium rule to attempt area between $x = 1$ and $x = 4$	Correct placing of <i>y</i> -values required <i>y</i> -values may not necessarily be correct, but must be from attempt at using correct <i>x</i> -values The 'big brackets' must be seen, or implied by later working Could be implied by stating general rule in terms of <i>y</i> ₀ etc, as long as these have been attempted elsewhere and clearly labelled Could use other than 2 strips as long as of equal width (but M0 for just one strip) Must have <i>h</i> as 1.5, or a value consistent with the number of strips used if not 2

Question	Answer/Indicative content	Marks	Part marks a	nd guidance
V	Allswei/illdicative content	A1	Obtain 9.60, or better (allow 9.6)	Allow answers in the range [9.595, 9.600] if > 3sf Answer only is 0/3 Using the trap. rule on the result of an integration attempt is 0/3, even if integration is not explicit Using two separate trapezia can get full marks Using other than 2 trapezia (but not just 1) can get M1 only Examiner's Comments This final part of the question was also very well answered, with many fully correct solutions being seen. Candidates generally showed their method clearly, and were able to identify the three relevant x-values and attempt the corresponding y-values. The trapezium rule was then usually correctly attempted, although some candidates committed the common error of omitting the necessary brackets. Very few candidates attempted to integrate the function before applying the trapezium rule.
	Total	12		

Q	uestio	n	Answer/Indicative content	Marks		Part marks a	nd guidance
5		а	$\frac{0.25}{2}(1 + 0.7071 + 2(0.970 + 0.8944 + 0.8))$	B1(AO 1.1)	Obtain all five ordinates and no others: 0.7071,	Accept exact values: 1,	
				M1(AO1. 1a)	0.8944, 1, 0.8, 0.970	$\begin{vmatrix} \frac{4}{\sqrt{17}}, \\ \frac{2}{\sqrt{5}}, \frac{4}{5}, \frac{1}{\sqrt{2}} \end{vmatrix}$	
			0.880	A1(AO1. 1) [3]	Use correct structure for trapezium rule with <i>h</i> = 0.25 0.880 or better (0.87 953077)	$\sqrt{5}$, $\sqrt{5}$, $\sqrt{2}$ x -coordinate s used M0. Omission of large brackets unless implied by correct answer M0 Accept 0.88 (0.879 53077)	
		b	"Use smaller intervals" or "use more trapezia"	B1(AO 2.4) [1]			
			Total	4			

Question Answer/Indicative content	Marks		Part marks and guidance
i 0.5×0.2{cos0 + cos0.8 + 2(cos0.2 + cos0.4 + cos0.6)} = 0.715	M1*	State the 5 correct y -values, and no others Attempt to find area between $x = 0$ and $x = 0.8$, using $k\{y_0 + y_n + 2(y_1 + + y_{n-1})\}$	B0 if other y-values also found (unless not used) Allow for exact values seen, even if subsequent error made (including evaluating in degree mode) Allow decimal equivs (2dp or better) (1, 0.980, 0.921, 0.825, 0.697); if using 2dp then allow 0.7 rather than 0.70 for final y value Correct placing of y-values required y -values may not necessarily be correct, but must be from attempt at using correct x-values in y = cosx (in radian mode or degree

Question	Answer/Indicative content	Marks		Part marks and guidance
		M1d*		mode) The 'big brackets' must be seen, or implied by
		A1	Use <i>k</i> = 0.5 × 0.2 soi	later working Could be
		[4]		implied by stating general
			Obtain 0.715, or better	rule in terms of y_0 etc, as long as these have been attempted elsewhere and clearly labelled Could use other than 4 strips as long as of equal width (but M0 for just one strip)
				Or $k = 0.5$ × h , where h is consistent with the number of strips used
				Allow answers rounding to 0.715 if >3sf Using 4 separate
				trapezia can get full

Question	Answer/Indicative content	Marks	Part marks and guidance
			marks
			Must see
			evidence of
			trapezium
			rule or 0/4
			(integration
			gives 0.717
			to 3sf)
			Working in
			degrees:
			B1 if exact
			values
			seen (ie
			cos0.2 etc), but B0 if
			I I
			straight into decimals
			M1 M1 is
			then
			possible as
			long as it is
			clear where
			each value
			is being
			placed
			piaceu
			0.5×0.2
			{1.00 +
			1.00 +
			2(1.00 +
			1.00 +
			1.00)} =
			0.800 will
			be 0/4
			unless
			more detail
			shown
			Examiner's Comments
			This question was very well
			answered, with many
			candidates gaining full
			marks. The most effective
			method was to write out the
			trapezium rule using exact
			values and then evaluate
			this on the calculator. Using
			decimal equivalents often
			resulted in a loss of
			accuracy in the final

Question	Answer/Indicative content	Marks	Part marks and guidance		
			answer. The regree was for ouse their calcudegree mode radian mode.	candidates to ulator in	
ii	Graph of <i>y</i> = cos <i>x</i> , with 4 trapezia drawn Tops of the trapezia are below the curve	B1 [2]	Correct y = cosx graph, with exactly 4 trapezia of roughly equal width Any valid explanation	Trapezia must be plausibly [0, 0.8], allow BOD as long as final trapezium ends before π/2 Curve may be shown beyond x = 0.8, but B0 if clearly of the incorrect shape beyond x = 0.8 No need for scale on either axis Exactly four trapezia must be shown, of roughly equal widths, with top vertices on the curve. Not dependent on previous B1 Must refer to the tops of the trapezia so B0 for 'trapezia so B0 for 'trapezia'	

Question	Answer/Indicative content	tent Marks Part marks and guidance			
			are below		
			curve' (ie		
			'top' not		
			used) Allow		
			'trapezium'		
			rather than		
			'trapezia'		
			Concave /		
			convex is		
			B0		
			B0 if		
			comparing		
			to exact		
			area		
			B1 for		
			decreasing		
			gradient		
			(but B0 for		
			decreasing		
			curve)		
			Candidates		
			could also		
			use their		
			diagram as		
			part of their		
			explanation		
			– as long		
			as there		
			was an		
			intention to		
			draw		
			trapezia		
			then they		
			are eligible		
			for the		
			second B1		
			even if B0		
			for the		
			diagram.		
			This could		
			include a		
			single		
			trapezium		
			(even if		
			labelled 0 –		
			0.8),		
			several		
			trapezia		
			whose tops		
1 1	i	l l	are		

Question	Answer/Indicative content				
			collinear,		
			an incorrect		
			$y = \cos x$		
			graph		
			(including y		
			= sin <i>x</i>) and		
			similar. Use		
			of		
			rectangles		
			to support		
			their		
			explanation		
			however is		
			B0.		
			They could		
			shade gaps		
			on their		
			diagram		
			but some		
			text also		
			required		
			B0 for		
			'some area		
			not		
			calculated'		
			unless		
			clear which		
			area -		
			could be		
			described		
			or shaded		
			ISW any		
			irrelevant		
			comments,		
			but B0 if		
			contradictor		
			У		
			comments		
			Examiner's Comments		
			This part of the question		
			was less well answered,		
			due to a lack of precision in		
			the explanations. Some		
			candidates referred to the		
			tops of the trapezia being		
			under the curve, whereas		
			others identified the areas		
			that had not been included		
			in the calculation. Either		
			approach was condoned,		
1 1	I		Tapping and delivering,		

Questic	n	Answer/Indicative content	Marks	Part marks and guidance
				as long as there was sufficient detail to be convincing. For the sketch graph, candidates were expected to provide a sketch of y = cosx with four trapezia shown. The most common error was to draw trapezia whose top vertices did not actually lie on the curve, and other errors included drawing just a single trapezium and even attempting to use y = sinx as the curve. Some precise and convincing solutions were seen,but these were in the minority.
		Total	6	

Qı	uestio	n	Answer/Indicative content	Marks	Part marks and guidance		nd guidance
7		а	(a) 0.5 × 1.5 × {8.0 + 8.6 + 2(8.5 + 8.2 + 8.40)} = 50.1	M1(AO1. 1a) A1(AO1. 1) [2]	Attempt use of correct trapezium rule Obtain correct area		
		а	(b) 50.1 × 0.49 = £24.55	B1ft(AO1 .1) [1]	Obtain cost of £24.55, ft their area		
		b	Could be under-estimate as modeling tops of trapezia with straight lines Lawn seed may only be sold in fixed volumes so may not be able to buy exact volume needed	B1(AO3. 5b) B1(AO3. 5b)	Limitation based on use of trapezium rule Limitation based on buying lawn seed	Accept any two sensible comments	
		С	Any sensible refinement	B1(AO3. 5c) [1]	Eg Use trapezium rule with more strips		

Question	Answer/Indicative content	Marks	Part marks and guidance	
d	$2\sin^{-1}(0.9375) = 2.43 \text{ rads}$	M1(AO3. 1b)	Attempt to find angle (rads or degs)	Could use cosine rule
		A1(AO1.	degs)	Allow 1.22
		1)	Obtain 2.43 rads, or	rads or 69.6°
	$0.5 \times 3.2^2 \times (2.43 - \sin 2.43)$ = 9.10	M1(AO1. 1a)	139°	
			Attempt complete	
		A1(AO1.	method to find area of	Allow 9.1
		1)	segment	Allow 9.1
		B1ft(AO		
	9.10 × 0.17 = £1.55	3.2a)	Obtain 9.10 (m ²)	Must include
		[5]		units
			Obtain cost of	
			£1.55, ft their area	
	Total	11		

Question	Answer/Indicative content	Marks	Part marks ar	nd guidance
8 i	Attempt calculation of form $k(y_0 + 4y_1 + 2y_2 + 4y_3 + y_4)$	M1	Any non-zero constant k with attempts at y values (in terms of In or decimals); M0 if attempt does not involve exactly four strips; M0 if	
	Obtain k(ln1ln 5 + 4ln 3ln 7 + 2ln 5ln 9 + 4ln 7ln11+ ln 9ln13)	A1	each y value initially 'amended', to ln(2x + 4) for example	
	Use $k = \frac{2}{3}$ Obtain 26.62	A1 A1	Or equiv involving decimals indicating use of correct values	
	Obtain 26.62	[4]	Allow greater accuracy	
			26.6159; any value rounding to 26.62 with no errors seen	
			Examiner's Comments	
			Part (i) was generally answered very well with candidates using the formula for Simpson's rule accurately. Some stated the expression to be evaluated using logarithms and proceeded to produce the answer. Others set out the values to be used in decimal form, sometimes with the values presented in a table. Errors did occur, presumably the result of careless use of calculator. There were very few instances of candidates using the wrong number of strips or of associating the coefficients 2 and 4 with the incorrect y values. There were a few instances of candidates trying to 'simplify' the y values where In3In7, for example,	

Question	Answer/Indicative content	Marks	Part marks and guidance
ii	State or imply that integrand now involves –ln x or 2ln(x + 4) or both Obtain –53.23 or –53.24 as final answer	M1 A1ft	Following their Simpson rule answer from (i), ie –2 times their answer; allow greater accuracy; correct answer with no working earns B2; second use of Simpson's rule leading to correct answer earns B2, but B0 if incorrect; concluding with 53.23 or 53.24 (perhaps with some reference to area below axis) is A0 Examiner's Comments Part (ii) was a slightly more challenging request and fewer than half the candidates were able to note that logarithm properties mean that the answer to part (ii) is –2 times the answer to part (ii). Answers such as 708.6 and 0.0014 were occasionally seen. Some candidates used Simpson's rule again and those doing so had to produce the correct answer to record both marks. Some candidates, having obtained the value –53.24 or –53.23 (either of which was acceptable) decided to drop the minus sign, often referring to an area below the x-axis. But this question involves a purely numerical request and losing the minus sign meant the loss of the accuracy mark.
	Total	6	

Question	Answer/Indicative content	Marks	Part marks and guidance		
9 a	$0.5 \times 0.5\{(e^{0} + e^{2^{2}}) + 2(e^{0.5^{2}} + e^{1^{2}} + e^{1.5^{2}})\}$ $= 20.6$	B1 (AO 1.1)	Obtain all five ordinates and no others Use correct structure for trapezium rule with <i>h</i> = 0.5 Obtain 20.6, or better	Allow decimal equivs (1, 1.284, 2.718, 9.488, 54.598) – 3sf or better B0 if other ordinates seen unless clearly not intended to be used Big brackets need to be seen or implied (40.9 is the result of no brackets) y-values must be correctly placed Must be using attempts at all 5 y-values Must be attempting area between x = 0 and x = 2 Allow more accurate answers in the range [20.64, 20.65)	
			Examiner's Co	ommonts	

Q	Question		Answer/Indicative content	Marks		Part marks a	nd guidance
					well answered fully correct so The most suc candidates sta identifying the	cessful arted by e relevant x exact y values ecimal and made	
		b	Use more trapezia, of a narrower width, over the same interval	B1 (AO 2.4)	Examiner's Convincing reason Examiner's Convincing reason The best explored to using trapezia, of a width, over the interval. Many mentioned eith more trapezia the width; givi	anations ing more narrower e same candidates her using or decreasing	
			Total	4	reason was co	ondoned in	

Qı	uestio	n	Answer/Indicative content	Marks	Part marks and		nd guidance
10		а	h = 2	B1(AO 1.1)E			
			$\frac{h}{2}\left[\frac{1}{2} + \frac{1}{4} + 2\left(\frac{1}{2+\sqrt{2}}\right)\right]$	M1(AO 2.1)E	Use of correct formula	Condone one error	
			$I \approx \frac{3}{4} + \frac{2}{2 + \sqrt{2}}$	A1(AO 1.1)C	with correct (exact) <i>y</i> -values with their <i>h</i>		
			$\frac{1}{2+\sqrt{2}} = \frac{\left(2-\sqrt{2}\right)}{\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)} = \frac{2-\sqrt{2}}{2}$	M1(AO 3.1a)E			
			$I \approx \frac{3}{4} + \left(2 - \sqrt{2}\right) = \frac{11}{4} - \sqrt{2}$	A1(AO 2.2a)A	Correct method for rationalisin g the denominato r of their surd together with correct simplificatio	Must be convincing as AG in values	
				[5]	n AG – at least one step of intermediat e working (from application of trapezium rule to given result)		
					Examiner's Condidates for extremely acconearly all corre	und this part essible and	

Question		Answer/Indicative content	Marks	Part marks and guidance		
				the given resulare reminded to show that' questions shown and states $\frac{2}{2}\left[\frac{1}{2} + \frac{1}{4} + 2\left(\frac{1}{2} + \frac{1}{4}\right)\right]$ are generally racceptable.	though that in estions ag must be stements such $\left[\frac{1}{\sqrt{2}}\right] = \frac{11}{4} - \sqrt{2}$	
		M1*(AO 3.1a)E	An attempt at integration by sub – allow any genuine attempt (as a minimum	Limits not required for first four marks		
		$\int_0^4 \frac{\mathrm{d}x}{2 + \sqrt{x}} = \int_0^2 \frac{2u}{2 + u} \mathrm{d}u$	A1(AO 1.1)C	must differentiate their sub. and		
		$=2\int_0^2 \frac{2+u-2}{2+u} du = 2\int_0^2 1 - \frac{2}{2+u} du$	Dep*M1(AO 2.1)C	remove all x's) Correct integral in terms of u	Or use <i>t</i> = 2 + <i>u</i> to obtain	
		$=2\left[u-2\ln(2+u)\right]_0^2$	A1ft(AO 1.1)A	Re-writes	integral of	
		$= 2\{(2 - 2\ln(2 + 2)) - (0 - 2)\}$	M1/AO	integral in the form $\int a + \frac{b}{1+u} du$	the form	
		In (2 + 0))}	M1(AO 1.1)C	Correctly integrates their	$\int a + \frac{b}{4} dt$ $\int 2 - \frac{4}{t} dt$	
		= 2(2 – 2ln 2)	A1(AO 2.2a)A	$\int a + \frac{b}{1+u} \mathrm{d}u$	= 2t – 4 ln t	
			[6]	Uses correct limits correctly (dependent on both		

Question	Answer/Indicative content	Marks	Part marks and guidance		
			marks) oe e.g. 4 – 4 ln 4 + 4 ln 2		
			Examiner's Comments While nearly all candidates used the substitution correctly and re–wrote the integra $\int_0^2 \frac{2u}{2+u} du$ many could I as not deal with the resulting improper fraction in the		
			integrand. The most successful candidates $\frac{2u}{2+u}$ either by re—wrote using long division or realising that $\frac{2u}{2+u} = \frac{4+2u-4}{2+u} = 2 - \frac{4}{2+u}$.		
			While examiners noted that some candidates employed more extreme methods (for example, further substitutions and the method of integration by parts) these were usually unsuccessful.		

Question		Answer/Indicative content	Marks	Part marks and guidance
	С	$\frac{11}{4} - \sqrt{2} \approx 2(2 - 2\ln 2)$ $\ln 2 \approx \frac{5}{16} + \frac{\sqrt{2}}{4}$	M1(AO 1.1a)C A1(AO 2.1a)A [2]	Setting the given result approx. equal to their (b) $k = \frac{5}{16}$ Examiner's Comments While some, who had struggled with part (b), left this part blank the majority of candidates equated their answers to parts (a) and (b) with nearly all who were successful in part (b) correctly determining tha $k = \frac{5}{16}$.
		Total	13	