[1]

- 1. The function f(x) is defined by $f(x) = x^4 + x^3 2x^2 4x 2$.
 - (a) Show that x = -1 is a root of f(x) = 0.
 - (b) Show that another root of f(x) = 0 lies between x = 1 and x = 2. [2]
 - (c) Show that f(x) = (x+1)g(x), where $g(x) = x^3 + ax + b$ and a and b are integers to be determined. [3]
 - (d) Without further calculation, explain why g(x) = 0 has a root between x = 1 and x = 2. [1]
 - (e) Use the Newton-Raphson formula to show that an iteration formula for finding roots of g(x) = 0 may be written

$$x_{n+1} = \frac{2x_n^3 + 2}{3x_n^2 - 2}$$

Determine the root of g(x) = 0 which lies between x = 1 and x = 2 correct to 4 significant figures. [3]

(a) Show that the equation

	$2x + \frac{1}{x} + \ln x - 4 = 0$
has a root	α such that $0.1 < \alpha < 0.9$

(b) Obtain the following Newton-Raphson iteration for the equation in part (a).

$$x_{r+1} = x_r - \frac{2x_r^3 + x_r + x_r^2(\ln x_r - 4)}{2x_r^2 - 1 + x_r}$$

(c) Explain why this iteration fails to find α using each of the following starting values.

(i) $x_0 = 0.4$	[2]
(ii) $x_0 = 0.5$	[2]
(iii) $x_0 = 0.6$	[2]

Page 2 of 11

PhysicsAndMathsTutor.com

[2]

[3]

Solution of Equations Joe uses the Newton-Raphson method to try to solve the equation $x^3 - 3x^2 - 10x + 25 = 0$.

(a)

З.

$$x_{n+1} = x_n - \frac{x_n^3 - 3x_n^2 - 10x_n + 25}{3x_n^2 - 6x_n - 10}$$

Show that the formula Joe should use is

(b) Joe uses $x_0 = 4$ in this formula to find a root and obtains the following values:

$$x_1 = 3.928\ 571\ 4,$$

 $x_2 = 3.924\ 992\ 8.$

Joe states that the root must be 3.92 to 2 decimal places and argues that this is because both x_1 and x_2 begin with 3.92.

(i) Comment on the validity of Joe's argument.

(ii) Use a sign change argument to show that Joe's statement is correct.

The graph of $y = x^3 - 3x^2 - 10x + 25$ in Fig. 11 shows that there is a root between 2 and 3.

(ii) Explain why the Newton-Raphson method fails to give the required root in this case. [2]

(d) Explain what Joe should do to find the root of the equation between 2 and 3. [1]

[2]

[2]

[1]

[1]

- 4. By considering a change of sign, show that the equation $e^x 5x^3 = 0$ has a root between [2] 0 and 1.
- 5. Rebecca is looking for the root of the equation

$$\sin 2x^2 - \cos 5x = 0$$

that lies between 0.2 and 0.3.

She uses the standard small angle approximations for sin θ and cos θ to find an estimate.

- (a) Show that Rebecca's method gives an estimate of 0.26 when rounded to 2 decimal [3] places.
- (b) Use a change of sign method to determine whether this value gives an estimate of the root which is correct to 2 decimal places.

[2]

Rebecca then uses the Newton-Raphson method to find another estimate for the root.

- (c) Show that using $x_0 = 0.2$ gives the value $x_1 = 0.291$ 989 3 correct to 7 decimal places. [5]
- (d) Continue this method, showing the result of each iteration, to find the root correct to 3 significant figures.

[3]

END OF QUESTION paper

Mark scheme

Question		n	Answer/Indicative content	Marks	Guidance
1		а	$f(-1) = (-1)^4 + (-1)^3 - 2(-1)^2 - 4(-1) - 2$ = 1 -1 - 2 + 4 - 2 = 0	E1(AO1.1) [1]	
		b	f(1) = 1 + 1 - 2 - 4 - 2 = -6 or 'negative' f(2) = 16 + 8 - 8 - 8 - 2 = 6 or 'positive' change of sign ⇒ root between 1 and 2	B1(AO1.1) E1(AO2.4) [2]	both correct allow no mention of continuity of f AG
		с	long division or equating coeffts $\Rightarrow g(x) = x^{a} - 2x - 2 \text{ so } a = -2, b = -2$	M1(AO1.1) A1A1(AO2.2a 1.1) [3]	
		d	Clear explanation E.g. $f(x) = (x + 1)g(x)$ For the root of $f(x) = 0$ between 1 and 2, RHS is also zero hence $g(x) = 0$	E1(AO2.4) [1]	
		е	$x_{n+1} = x_n - \frac{g(x_n)}{g'(x_n)}$ $= x_n - \frac{x_n^3 - 2x_n - 2}{3x_n^2 - 2}$	M1(AO1.1) E1(AO2.4)	

				Solution of Equations
		$=\frac{3x_n^3 - 2x_n - x_n^3 + 2x_n + 2}{3x_n^2 - 2}$ $=\frac{2x_n^3 + 2}{3x_n^2 - 2}$	A1(AO2.2a)	AG
		$3x_n^2 - 2$ Root 1.769 (4sf)	[3]	BC
		Total	10	
2	а	f(0.1) = 3.897and f(0.9) = -1.194 sign change so $0.1 < \alpha < 0.9$	B1(AO 1.1) E1(AO 1.2) [2]	
		$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = \frac{1}{2} - \frac{1}{x^2} + \frac{1}{x}$	B1(AO 1.1)	
	b	$x_{r+1} = x_r - \frac{2x_r + \frac{1}{x_r} + \ln x_r - 4}{2 - \frac{1}{x_r^2} + \frac{1}{x_r}}$	M1(AO 1.1)	
		$x_{r+1} = x_r - \frac{2x_r^3 + x_r + x_r^2(\ln x_r - 4)}{2x_r^2 - 1 + x_r}$	A1(AO 2.2a) [3]	AG
	с	(A) $x_1 = -0.52359$	B1(AO 1.1) E1(AO 2.4)	

		which is negative so the iteration stops because $f(x)$ is undefined for $x < 0$	[2]	Solution of Equations
	с	(B) gradient is zero at 0.5 so tangent never touches <i>x</i> -axis	B1(AO 1.1) E1(AO 2.4) [2]	
	c	(C) 2.4497, 1.4667, 1.4675, 1.4675 <i>or</i> 0.6 is to the right of the turning point so converges to larger root	B1(AO 1.1) E1(AO 2.4) [2]	
		Total $f(x) = x^{2} - 3x^{2} - 10x + 25 \Rightarrow f'(x) = 3x^{2} - 6x - 10, \text{ so}$	11	
3	a	the N-R formula gives $x_{n+1} = x_n - \frac{x_n^3 - 3x_n^2 - 10x_n + 25}{3x_n^2 - 6x_n - 10}$	E1(AO2.1) [1]	AG Must be clear that denominator is derivative of numerator
	b	(i) Not valid: the sequence may decrease further, far enough to change the first 3 figures	B1(AOs 2.3)	Reason for 'not valid'

					Solution of Equiptions
		f (3.915) = -0.1255 and f(3.925) = 2.03 x 10 ⁻⁴	[1]	needed	Solution of Equations
	(ii)	Change of sign shows that there is a root in the interval (3.915, 3.925) so the root is 3.92 to 2dp	M1(AO2.1)		
			A1(AO2.2a)	Both calculations	Allow use of any two values closer to 3.92
				Complete argument needed	that give sign change
		$x_0 = 3 \& \Rightarrow x_1 = -2$	B1(AO1.1b)	Correct first iteration x_2 and x_3 correct to at least 3dp	
	(i)	$x_2 = -3.785$ 71. and $x_3 = -3.168$ 34.	B1(AO1.1b) [2]		
с	(ii)	The initial value is close to a stationary point, so the tangent meets the <i>x</i> -axis far from the required root, and the sequence converges to the wrong root	B1(AO2.3) B1(AO2.4) [2]	Explanations do not need to include a sketch; if a sketch is included, ignore any inaccuracies if correct explanation is given; sketch with no explanation scores 0 'close to stationary point' oe seen	

				'converges to wrong root' oe seen
	d	Choose starting value near the root and not near a stationary point, eg take $x_0 = 2$	E1(AO2.1) [1]	
		Total	9	
		When $x = 0 e^0 - 5 \times 0^3 = 1 > 0$	M1 (AO 1.1a)	Attempting to evaluate the function at both values
4			E1 (AO 2.2a)	Conclusion from correct values
		When $x = 1 e^1 - 5 \times 1^3 = e - 5 < 0$		
		So [as the function is continuous and there is a change of sign] there is a root between 0 and 1	[2]	Examiner's Comments
				This question was generally well answered with only a few candidates making an arithmetical error that cost a mark.
		Total	2	
		Using sin $\theta \approx \theta$ with $\theta = 2x^2$ and $\cos \theta \approx 1 - \frac{1}{2}\theta^2$ with $\theta = 5x$ gives		
5	а	$2x^2 - \left(1 - \frac{1}{2}(5x)^2\right) = 0$	M1 (AO 2.1) M1 (AO 2.1)	Allow slip in $(5x)^2$
		$\frac{29}{2}x^2 = 1 \Longrightarrow x = \sqrt{\frac{2}{29}} = 0.2626$ K	A1 (AO 2.1)	Attempt to solve for x
		So estimate is 0.26 to 2 decimal places		AG Must be rounded

					Solution of Equations
			[3]	to 2 dp following either exact answer or	
				answer to more than 2 dp seen	
	b	Denoting sin $2x^2 - \cos 5x$ by f(x): f(0.255) = -0.1618 and f(0.265) = -0.1033	M1 (AO 2.1)	Search for sign change using their 2dp value ±0.005	oe, e.g. comparing
		These are both negative so the root does not lie between 0.255 and 0.265, so the estimate is not correct to 2 decimal places	A1 (AO 2.2a) [2]	Complete argument from correct figs	cos5 <i>x</i> at end-points
		$f'(x) = 4x\cos 2x^2 + 5\sin 5x$			
			M1 (AO 1.1a) M1 (AO 1.1a)		
			A1 (AO 1.1)	Use of chain rule for $\sin 2x^2$	
			M1 (AO 2.1)	Derivative fully correct	
	С	$x_1 = 0.2 - \frac{\sin(2 \times 0.2^2) - \cos(5 \times 0.2)}{4 \times 0.2 \cos(2 \times 0.2^2) + 5 \sin(5 \times 0.2)}$		Use of iterative formula to find x_1	
		$= 0.2 - \frac{-0.4603876119}{5004796289} = 0.29198928$ K	A1 (AO 2.1)		
		5.004 / 20 202	[5]	AG Answer must	
		so x ₁ = 0.291 989 3 correct to / dp			·

		x ₂ = 0.282 338 3	M1 (AO 1.1a) A1 (AO 1.1)	Finds at least one more iteration
(d	<i>x</i> ₃ = 0.282 285 3	B1 (AO 2.2b)	For correct x_3
		Root is 0.282 correct to 3sf	[3]	