


Fig. 3

i. Use the trapezium rule with 4 strips to estimate the area of the region bounded by the curve, the *x*-axis and the line  $x = \frac{\pi}{4}$ , giving your answer to 3 decimal places.

[4]

ii. Suppose the number of strips in the trapezium rule is increased. Without doing further calculations, state, with a reason, whether the area estimate increases, decreases, or it is not possible to say.

[1]

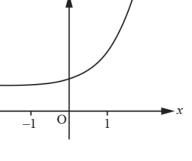
1.

2. Fig. 6 shows a partially completed spreadsheet. This spreadsheet uses the trapezium rule with four strips to estimate

| $\int_0^{\frac{1}{2}\pi} \sqrt{1+\sin x}  \mathrm{d}x$ |       |        |          |        |        |  |  |  |  |  |
|--------------------------------------------------------|-------|--------|----------|--------|--------|--|--|--|--|--|
|                                                        | Α     | В      | С        | D      | E      |  |  |  |  |  |
| 1                                                      |       | x      | $\sin x$ | У      |        |  |  |  |  |  |
| 2                                                      | 0     | 0.0000 | 0.0000   | 1.0000 | 0.5000 |  |  |  |  |  |
| 3                                                      | 0.125 | 0.3927 | 0.3827   | 1.1759 | 1.1759 |  |  |  |  |  |
| 4                                                      | 0.25  | 0.7854 | 0.7071   | 1.3066 | 1.3066 |  |  |  |  |  |
| 5                                                      | 0.375 | 1.1781 | 0.9239   | 1.3870 | 1.3870 |  |  |  |  |  |
| 6                                                      | 0.5   | 1.5708 | 1.0000   | 1.4142 | 0.7071 |  |  |  |  |  |
| 7                                                      |       |        |          |        | 5.0766 |  |  |  |  |  |
| 8                                                      |       |        |          |        |        |  |  |  |  |  |
|                                                        |       |        | Fig. 6   |        |        |  |  |  |  |  |

(a) Show how the value in cell B3 is calculated.

- (b) Show how the values in cells D2 to D6 are used to calculate the value in cell E7. [1]
- (C) [2] Complete the calculation to estimate  $\int_{0}^{\frac{1}{2}\pi} \sqrt{1 + \sin x} \, dx$ , giving the answer to 3 significant figures.
- Fig. 3 shows the curve  $y = \sqrt{1 + e^{2x}}$ . З.


Fig. 3

 $\sqrt{1+e^{2x}}dx$ is to be estimated using the trapezium rule.  $T_2$  and  $T_4$  are the The value of estimates obtained from the trapezium rule using 2 strips and 4 strips respectively.

- (i) Explain whether  $T_4$  is greater or less than  $T_2$ .
- (ii) Evaluate  $T_4$ , giving your answer to 3 significant figures.

[4]

[1]



[2]

[3]

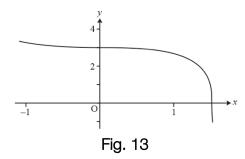
[3]

[2]

4. The function f (x) is defined by  $f(x) = \sqrt[3]{27-8x^3}$ . Jenny uses her scientific calculator to create a table of values for f (x) and f '(x).

| X    | f( <i>x</i> ) | f'( <i>x</i> ) |
|------|---------------|----------------|
| 0    | 3             | 0              |
| 0.25 | 2.9954        | -0.056         |
| 0.5  | 2.9625        | -0.228         |
| 0.75 | 2.8694        | -0.547         |
| 1    | 2.6684        | -1.124         |
| 1.25 | 2.2490        | -1.977         |
| 1.5  | 0             | ERROR          |

- (a) Use calculus to find an expression for f'(x) and hence explain why the calculator gives an error for f'(1.5).
- (b) Find the first three terms of the binomial expansion of f(x).


Jenny integrates the first three terms of the binomial expansion of f(x) to estimate the value of

(c)  $\int_{-1}^{1} \sqrt[3]{27 - 8x^3} \, dx$ 

Jover 27 - or the contract of the contract of

(d) Use the trapezium rule with 4 strips to obtain an estimate for  $\int_0^1 \sqrt[3]{27 - 8x^3} dx$  [3]

The calculator gives 2.921 174 38 for  $\int_0^1 \sqrt[3]{27-8x^3} dx$ . The graph of y = f (x) is shown in Fig. 13.



(e) Explain why the trapezium rule gives an underestimate.

[1]

[1]

[2]

5. Fig. 5.1 shows the curve  $y = e^{1 - x^2}$ . Fig. 5.2 shows a spreadsheet used to calculate an estimate of  $\int_0^2 e^{1-x^2} dx$  using the trapezium rule with four strips.

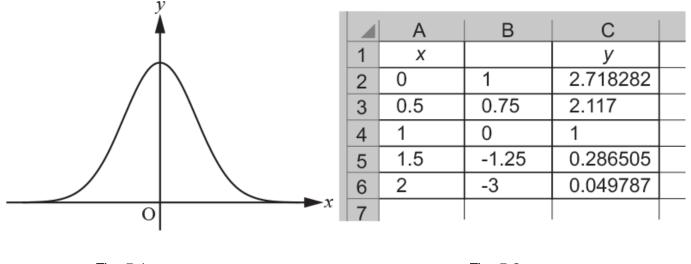



Fig. 5.1



- (a) Show how the value in cell B3 is calculated.
- (b) Complete the calculation to estimate  $\int_0^2 e^{1-x^2} dx$ , giving the answer correct to 3 [2] significant figures.
- (c) Show that the only stationary point on the curve is at (0, e).

[2]

Bob wishes to find an estimate for  $\int_0^2 f(x) dx$ , where  $f(x) = \sqrt{x^2 + 3}$ , using the trapezium rule with 4 strips.

Fig. 6 is a screenshot of a spreadsheet Bob created to help him. In rows 2 to 6, the values in columns B and C have been multiplied to give the value in column D. The value in D7 is the sum of the values from D2 to D6.

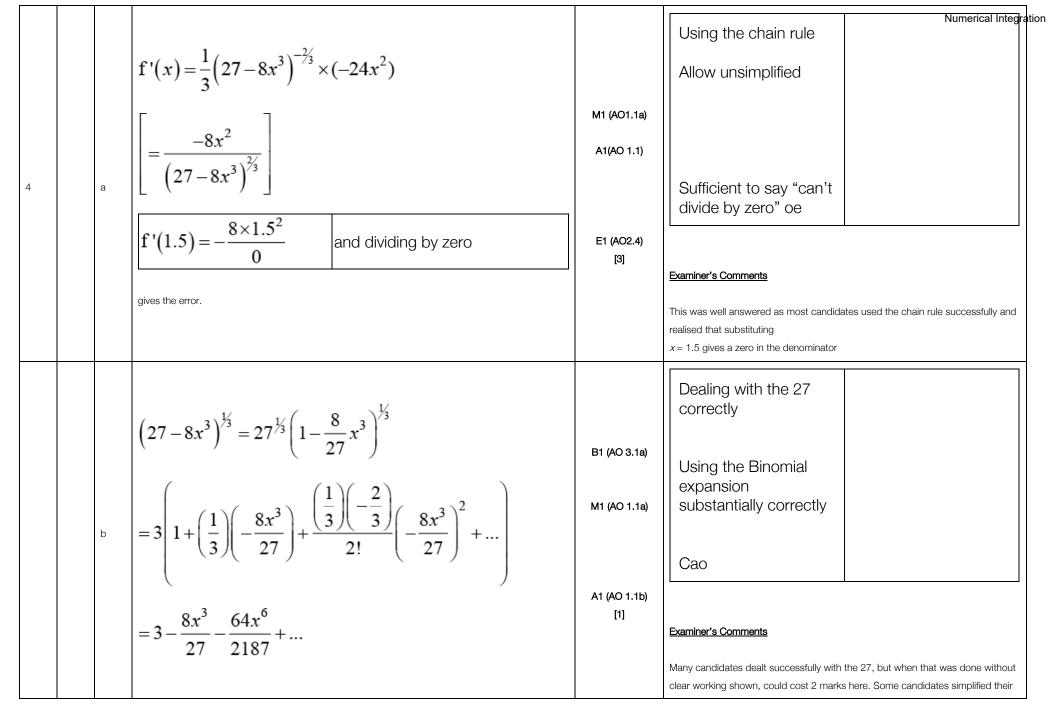
|   | А   | В        | C          | D                  |  |
|---|-----|----------|------------|--------------------|--|
| 1 | Х   | f(x)     | multiplier | multiple of $f(x)$ |  |
| 2 | 0   | 1.732051 | 1          | 1.7321             |  |
| 3 | 0.5 | 1.831271 | 2          | 3.6625             |  |
| 4 | 1   | 2        | 2          | 4                  |  |
| 5 | 1.5 | 2.199345 | 2          | 4.3987             |  |
| 6 | 2   | 2.414214 | 1          | 2.4142             |  |
| 7 |     |          |            | 16.2075            |  |

Fig. 6

Calculate the estimate for 
$$\int_0^2 \sqrt{x^{\frac{3}{2}} + 3} dx$$
 that Bob should obtain by using the trapezium rule with 4 strips.

(b) You are given that the graph of y = f(x) is concave upwards for  $0 \le x \le 2$ . Explain what you can deduce about the estimate for the integral obtained in part (a). [1]

END OF QUESTION paper


(a)

## Mark scheme

|   | Question |    |          |             |                    | Answer/Indicative    | content            |        | Marks   | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---|----------|----|----------|-------------|--------------------|----------------------|--------------------|--------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 |          | i  | x        | 0           | 0.1963             | 0.3927               | 0.5890             | 0.7854 | B2, 1,0 | For values 0.4493,0.6792,0.9498 ( <b>4dp</b> or better soi) [accept truncated to 4 figs after dec point]                                                                                                                                                                                                                                                                                                                    |
|   |          |    | <u>y</u> | 0           | 0.4493             | 0.6792               | 0.9498             | 1.3254 |         | [cannot assume values of form $(\pi/16)^3 + \sqrt{(\sin \pi/16)}$ are correct unless followed<br>by correct total at some later stage as some will be in degree mode]                                                                                                                                                                                                                                                       |
|   |          | i  | A = (π/3 | 32) [(0 + 1 | .3254) + 2(0.4493  | + 0.6792 + 0.9498)]  |                    |        | M1      | Use of the trapezium rule. Trapezium rule formula for <b>4 strips</b> must be seen, with or without substitution seen. <b>Correct <i>h</i> must be soi</b> .                                                                                                                                                                                                                                                                |
|   |          |    |          |             |                    |                      |                    |        |         | [accept separate trapezia added]<br>0.538 <b>www 3dp only</b> (NB using 1.325 is ww)                                                                                                                                                                                                                                                                                                                                        |
|   |          |    |          |             |                    |                      |                    |        |         | SC B0 0.538 without any working as no indication of strips or method used<br>SC B1 0.538 with some indication of 4 strips but no values seen<br>Correct values followed by 0.538 scores B2 B0<br>Correct values followed by correct formula for 4 strips, with or without<br>substitution seen, then A = 0.538 scores 4/4.<br>Correct formula for 4 strips and values of form ( $(\pi/16)^3 + \sqrt{(\sin\pi/16)}$ followed |
|   |          | i  | = 0.53   | 8           |                    |                      |                    |        | A1      | by correct answer scores 4/4 (or ¾ with wrong dp)<br>NB Values given in the table to only 3dp give apparently the correct answer, but<br>scores B0,M1A0 ww                                                                                                                                                                                                                                                                  |
|   |          |    |          |             |                    |                      |                    |        |         | Examiner's Comments                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |          |    |          |             |                    |                      |                    |        |         | Many errors were seen here. In a number of cases the candidates were in degree mode. For others $h$ was given incorrectly. Many others used the wrong formula and some substituted $x$ values in the formula or omitted 0 from the formula. However, probably the most common error was giving the $y$ values to 3dp and then using these to give a final answer correct to 3dp.                                            |
|   |          | ii | Not po   | ssible to s | ay, eg some trapez | zia are above and sc | me below curve oe. |        | B1      | Need a reason. Must be without further calculation.                                                                                                                                                                                                                                                                                                                                                                         |

|   |   |                                                                                                                                                                   |                               | Examiner's Comments Numerical Integration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |   |                                                                                                                                                                   |                               | This was a good discriminator as it really tested whether candidates understood<br>how the trapezium rule estimates area. Some believed that it always<br>underestimated or always overestimated.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   |   | Total                                                                                                                                                             | 5                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2 | а | A3*π oe                                                                                                                                                           | B1(AO2.2a)<br>[1]             | Or 0.125×π oe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | b | $\frac{1}{2}$ D2 + D3 + D4 + D5 + $\frac{1}{2}$ D6                                                                                                                | B1(AO2.2a)<br>[1]             | Or equivalent expressed in words.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | с | 5.0766 × 0.3927 = 1.9935<br>1.99 (units <sup>2</sup> ) (to 3sf)                                                                                                   | M1(AO1.1)<br>A1(AO1.1)<br>[2] | Or 5.0766 $\times \frac{\pi}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   |   | Total                                                                                                                                                             | 4                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3 | i | $T_4 < T_2$<br>The approximation is an over-estimate, as the trapezia are above the curve therefore the error<br>becomes less when the number of strips increases | B1<br>B1<br>[2]               | oe (e.g. 4 $T_4$ is less than $T_2$ )<br>Must see mention of 'over-estimate' and<br>'above' and 'increasing strips'<br><b>Examiner's Comments</b><br>The first mark in part (i) was awarded to the vast majority of candidates for<br>correctly stating that $T_4$ was less than $T_2$ although some candidates did not<br>make it explicitly clear which value of the two was the least. Candidates found<br>the second mark a lot harder to come by as it was not sufficient to simply state<br>that the approximations given by the trapezium rule were an over-estimate.<br>Candidates needed to make it clear that these approximations were an over- |

|    | Total                                 | 6   |                                                                                                                                                             |
|----|---------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                       | [4] |                                                                                                                                                             |
|    |                                       |     | required 3 significant figures.                                                                                                                             |
|    | + 1.2061                              |     | very rare for candidates to use the <i>x</i> values or to not give the answer to the                                                                        |
|    | <b>OR</b> 0.5587 + 0.6459 + 0.8356    |     | incorrect value for the width of the strips or with the omission of a value. It was                                                                         |
|    |                                       |     | the correct answer of 3.25. When errors occurred it was usually due to an                                                                                   |
|    |                                       |     | Part (ii) was answered extremely well with the vast majority of candidates giving                                                                           |
|    |                                       |     | Examiner's Comments                                                                                                                                         |
|    |                                       |     | A1 – cao of 3.25                                                                                                                                            |
|    |                                       |     | A1 – all four correct                                                                                                                                       |
|    | $I_4 = 3.20$                          |     | M1 - three correct (equivalent to one error)                                                                                                                |
|    | $T_4 = 3.25$                          |     | B1 – one area correct (implies 0.25)                                                                                                                        |
|    |                                       |     | Separate trapezia                                                                                                                                           |
| ii |                                       | A1  | 10.0 rd usually indicates this entor                                                                                                                        |
|    |                                       |     | 10.014 usually indicates this error                                                                                                                         |
|    |                                       |     | SC: bracketing error $0.25 \times (1.0655 + 2.8963) + 2(1.1695 +)$ scores<br>B1M1A0A0 unless the final answer implies the correct calculation. An answer of |
|    |                                       |     | correct answer is 3.2465079)<br>SC: bracketing error 0.25 × (1.0655 + 2.8963) + 2(1.1695 +) scores                                                          |
|    |                                       |     | cao (3.25 with no working scores $0/4$ ) – must be given to 2dp only (for reference                                                                         |
|    |                                       |     | M1A1)                                                                                                                                                       |
|    |                                       |     | The A mark is for the correct {} bracket with no errors (12.98 or 13.0 implie                                                                               |
|    |                                       |     | given to at least 3sf or exact                                                                                                                              |
|    |                                       |     | omission of one value from the second bracket M0 if using <i>x</i> values. All values                                                                       |
|    | , , , , , , , , , , , , , , , , , , , |     | remaining y values with no additional values. Allow an error in one value or the                                                                            |
|    | + 1.4142 + 1.9282)                    |     | second bracket to be multiplied by 2 and to be the summation of the                                                                                         |
|    | {1.0655 + 2.8963 + 2(1.1695           |     | to contain the first y value plus the last y value and the                                                                                                  |
|    | 0.5 × 0.5                             |     | The M mark requires the correct {} bracket structure. It needs the first bracket                                                                            |
|    |                                       | A1  | For using 0.25 oe                                                                                                                                           |
|    |                                       | M1  |                                                                                                                                                             |
|    |                                       | B1  |                                                                                                                                                             |
|    |                                       |     | of the integral) would become less when the number of strips increases.                                                                                     |
|    |                                       |     | in turn, mean that the error (in using a trapezium rule approximation for the value                                                                         |
|    |                                       |     | estimate because the tops of the trapezia are above the curve which would the                                                                               |



|   |                                                                                                                                                        |                                                     | expansion had been used, costing the m                                                                                                                                                                                                                                                                                                                                                                                                         | Numerical Integra                                                                        |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| С | $\left -8\frac{x^3}{27}\right  < 1$<br>The binomial expansion is valid for $ x  < 1.5$ and the limits of the integral are completely in this interval. | B1 (AO 2.4)<br>E1 (AO 2.3)<br>[2]                   | Allow unsimplified but<br>must use correct<br>modulus notation or<br>equivalent<br>Must indicate that the<br>limits of the integral lie<br>in their interval for<br>which the expansion is<br>valid.<br>Examiner's Comments<br>One of the assessment objectives in the<br>candidate to assess the validity of an arg<br>candidates realised that the key to this e<br>values for which the binomial expansion<br>range so the method is valid. | ument as in this question. Not many xplanation was to find the range of                  |
| d | $\frac{0.25}{2} (3 + 2.6684 + 2(2.9954 + 2.9625 + 2.8694))$                                                                                            | B1 (AO 1.1a)<br>M1 (AO 1.1b)<br>A1 (AO 1.1b)<br>[3] | h = 0.25 used<br>For sum in the bracket<br>– condone one slip.                                                                                                                                                                                                                                                                                                                                                                                 | Values from<br>candidates own<br>calculators may differ<br>in the last decimal<br>place. |

|   |   | $=\frac{0.25}{2} \times 23.3224 = 2.9153$                                                                   |                             | Allow for 2.92 or<br>better                                                                                                                                                                                                |
|---|---|-------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |   |                                                                                                             |                             | Examiner's Comments This was generally done very well.                                                                                                                                                                     |
|   |   |                                                                                                             |                             | Allow for any sensible<br>explanation eg the<br>trapezia are under the<br>curve"The curve is concave<br>                                                                                                                   |
|   | е | There is area between the curve and the top of the trapezia, so some area is missing from the estimate.     | E1 (AO 2.4)<br>[1]          | Examiner's Comments Most candidates were able to explain this clearly. Some had learned that a curve being concave downwards would give an underestimate but gave no indication as to why that would be, so lost the mark. |
|   |   | Total                                                                                                       | 12                          |                                                                                                                                                                                                                            |
| 5 | а | 1 – 0.5 <sup>2</sup>                                                                                        | B1 (AO 2.2a)<br>[1]         | oe                                                                                                                                                                                                                         |
|   | b | $\frac{0.5}{2} \left\{ \left( 2.718282 + 0.049787 \right) + 2 \left( 2.117 + 1 + 0.286505 \right) \right\}$ | M1 (AO 1.1a)<br>A1 (AO 1.1) |                                                                                                                                                                                                                            |

|   |   | = 2.39 (correct to 3 significant figures)                                                                                                            | [2]                          |                                                                                                                                                             | Numerical Integration                                                                    |
|---|---|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|   |   | $\frac{\mathrm{d}y}{\mathrm{d}x} = -2x\mathrm{e}^{1-x^2}$                                                                                            | M1 (AO 1.1a)                 |                                                                                                                                                             |                                                                                          |
|   | с | $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$ only when $x = 0$ , giving                                                                                     | E1 (AO 2.1)                  |                                                                                                                                                             |                                                                                          |
|   |   | $y = e^{1-0} = e$                                                                                                                                    | [2]                          | AG Convincing completion                                                                                                                                    |                                                                                          |
|   |   | Total                                                                                                                                                | 5                            |                                                                                                                                                             |                                                                                          |
| 6 | а | $h = 0.5 \Rightarrow \text{Integral} \approx \frac{1}{2} \times 0.5 \times 16.2075$                                                                  | M1 (AO 1.1a)<br>A1 (AO 1.1b) | Substitution of <i>h</i> and<br>the total from<br>spreadsheet and<br>using it in the<br>trapezium rule formula<br>awrt 4.05                                 | Allow recalculation of<br>the spreadsheet total<br>from scratch                          |
|   |   | = 4.051 875                                                                                                                                          | [2]                          |                                                                                                                                                             |                                                                                          |
|   | b | The estimate is an overestimate; as the curve is concave upwards the tops of the trapezia are above the curve and so the trapezia include extra area | E1 (AO 2.2a)<br>[1]          | Overestimate stated<br>with clear explanation<br>(must include<br>reference to trapezia<br>being above the<br>curve, or a suitable<br>diagram showing this) | Do not allow for<br>argument based on a<br>value for the integral<br>found by calculator |
|   |   | Total                                                                                                                                                | 3                            |                                                                                                                                                             |                                                                                          |