Questions

Q1.

$$f(x) = \ln(2x-5) + 2x^2 - 30, x > 2.5$$

(a) Show that f(x) = 0 has a root α in the interval [3.5, 4]

(2)

A student takes 4 as the first approximation to α .

Given f(4) = 3.099 and f'(4) = 16.67 to 4 significant figures,

(b) apply the Newton-Raphson procedure once to obtain a second approximation for α , giving your answer to 3 significant figures.

(c) Show that α is the only root of f(x) = 0

(2)

(2)

(Total for question = 6 marks)

Q2.

The equation $2x^3 + x^2 - 1 = 0$ has exactly one real root.

(a) Show that, for this equation, the Newton-Raphson formula can be written

$$x_{n+1} = \frac{4x_n^3 + x_n^2 + 1}{6x_n^2 + 2x_n}$$

Using the formula given in part (a) with $x_1 = 1$

(b) find the values of x_2 and x_3

(2)

(3)

(c) Explain why, for this question, the Newton-Raphson method cannot be used with $x_1 = 0$

(1)

(Total for question = 6 marks)

Mark Scheme

Q1.

Question	Scheme	Marks	AOs
(a)	f(3.5) = -4.8, f(4) = (+)3.1	M1	1.1b
	Change of sign and function continuous in interval $[3.5, 4] \Rightarrow \text{Root} *$	A1*	2.4
		(2)	
(b)	Attempts $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \Rightarrow x_1 = 4 - \frac{3.099}{16.67}$	M1	1.1b
	x ₁ =3.81	A1	1.1b
	$y = \ln(2x - 5)$	(2)	
(c)	$y = 30 - 2x^2$	M1	3.1a
	Attempts to sketch both $y = \ln(2x - 5)$ and $y = 30 - 2x^2$		
	States that $y = \ln(2x - 5)$ meets $y = 30 - 2x^2$ in just one place, therefore $y = \ln(2x - 5) = 30 - 2x$ has just one root \Rightarrow f (x) = 0 has just one root	A1	2.4
		(2)	
	•	(6 n	narks)
Notes:			
A1*: f(3. cond bein	empts $f(x)$ at both $x = 3.5$ and $x = 4$ with at least one correct to 1 signific 5) and $f(4)$ correct to 1 sig figure (rounded or truncated) with a correct clusion. A reason could be change of sign, or $f(3.5) \times f(4) < 0$ or similar or continuous in this interval. A conclusion could be 'Hence root' or 'The rval'	reason and ir with f(x)	
(b)	S(-) 2 222		
M1: Atte	empts $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ evidenced by $x_1 = 4 - \frac{3.099}{16.67}$		
A1: Con	rect answer only $x_1 = 3.81$		
(c) M1: For	a valid attempt at showing that there is only one root. This can be achies Sketching graphs of $y = \ln(2x - 5)$ and $y = 30 - 2x^2$ on the same axe Showing that $f(x) = \ln(2x - 5) + 2x^2 - 30$ has no turning points Sketching a graph of $f(x) = \ln(2x - 5) + 2x^2 - 30$	-	
A1: Scor	red for correct conclusion		

Q2.

Question	Scheme	Marks	AOs
	The equation $2x^3 + x^2 - 1 = 0$ has exactly one real root		
(a)	$\{\mathbf{f}(x) = 2x^3 + x^2 - 1 \Longrightarrow\} \mathbf{f}'(x) = 6x^2 + 2x$	B1	1.1b
	$\left\{ x_{n+1} = x_n - \frac{\mathbf{f}(x_n)}{\mathbf{f}'(x_n)} \Longrightarrow \right\} \left\{ x_{n+1} \right\} = x_n - \frac{2x_n^3 + x_n^2 - 1}{6x_n^2 + 2x_n}$	M 1	1.1b
	$=\frac{x_n(6x_n^2+2x_n)-(2x_n^3+x_n^2-1)}{6x_n^2+2x_n} \implies x_{n+1}=\frac{4x_n^3+x_n^2+1}{6x_n^2+2x_n} *$	A1*	2.1
		(3)	
(b)	$ \{x_1 = 1 \Rightarrow \} \ x_2 = \frac{4(1)^3 + (1)^2 + 1}{6(1)^2 + 2(1)} \text{or} x_2 = 1 - \frac{2(1)^3 + (1)^2 - 1}{6(1)^2 + 2(1)} \\ \Rightarrow x_2 = \frac{3}{4}, \ x_3 = \frac{2}{3} $	M1	1.1b
	$\implies x_2 = \frac{3}{4}, \ x_3 = \frac{2}{3}$	A1	1.1b
		(2)	
(c)	 Accept any reasons why the Newton-Raphson method cannot be used with x₁ = 0 which refer or <i>allude</i> to either the stationary point or the tangent. E.g. There is a stationary point at x = 0 Tangent to the curve (or y = 2x³ + x² - 1) would not meet the x-axis Tangent to the curve (or y = 2x³ + x² - 1) is horizontal 	B1	2.3
		(1)	
(61			marks)

Notes for Question			
(a)			
B1:	States that $f'(x) = 6x^2 + 2x$ or states that $f'(x_n) = 6x_n^2 + 2x_n$ (Condone $\frac{dy}{dx} = 6x^2 + 2x$)		
M1:	Substitutes $f(x_n) = 2x_n^3 + x_n^2 - 1$ and their $f'(x_n)$ into $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$		
Al*:	A correct intermediate step of making a common denominator which leads to the given answer		
Note:	Allow B1 if $f'(x) = 6x^2 + 2x$ is applied as $f'(x_n)$ (or $f'(x)$) in the NR formula $\{x_{n+1}\} = x_n - \frac{f(x_n)}{f'(x_n)}$		
Note:	Allow M1A1 for		
	• $x_{n+1} = x - \frac{2x^3 + x^2 - 1}{6x^2 + 2x} = \frac{x(6x^2 + 2x) - (2x^3 + x^2 - 1)}{6x^2 + 2x} \implies x_{n+1} = \frac{4x_n^3 + x_n^2 + 1}{6x_n^2 + 2x_n}$		
Note	Condone $x = x - \frac{2x^3 + x^2 - 1}{6x^2 + 2x^2}$ for M1		
Note	Condone $x_n = \frac{2x_n^3 + x_n^2 - 1}{6x_n^2 + 2x_n^2}$ or $x = \frac{2x^3 + x^2 - 1}{6x^2 + 2x^2}$ (i.e. no $x_{n+1} =$) for M1		
Note:	Give M0 for $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ followed by $x_{n+1} = 2x_n^3 + x_n^2 - 1 - \frac{2x_n^3 + x_n^2 - 1}{6x_n^2 + 2x_n}$		
Note:	Correct notation, i.e. x_{n+1} and x_n must be seen in their final answer for A1*		
(b)			
M1:	An attempt to use the given or their formula once. Can be implied by $\frac{4(1)^3 + (1)^2 + 1}{6(1)^2 + 2(1)}$ or 0.75 o.e.		
Note:	Allow one slip in substituting $x_1 = 1$		
A1:	$x_2 = \frac{3}{4}$ and $x_3 = \frac{2}{3}$		
Note:	Condone $x_2 = \frac{3}{4}$ and $x_3 = $ awrt 0.667 for A1		
Note:	Condone $\frac{3}{4}, \frac{2}{3}$ listed in a correct order ignoring subscripts		
(c)			
B1:	See scheme		
Note:	Give B0 for the following isolated reasons: e.g.		
	 You cannot divide by 0 The fraction (or the NR formula) is undefined at x = 0 		
	• The fraction (of the NK formula) is undefined at $x = 0$ • At $x = 0$, $f'(x_1) = 0$		
	• x_1 cannot be 0		
	• $6x^2 + 2x$ cannot be 0		
	 ox + 2x cannot be 0 the denominator is 0 which cannot happen 		
	• if $x_1 = 0$, $6x^2 + 2x = 0$		
	$-11 \text{ A} = 0, 00 \pm 20 = 0$		