Find $\int x \cos 3x \, dx$. 1.

Find $\int x^{\beta} \ln(3x) dx$. 2.

[5]

[4]

3.
i. Use division to show that
$$\frac{t^3}{t+2} \equiv t^2 - 2t + 4 - \frac{8}{t+2}$$
.

ii. Find
$$\int_{1}^{2} 6t^{2} \ln(t+2) dt$$
. Give your answer in the form $A + B \ln 3 + C \ln 4$.

[6]

[3]

4.
Find the exact value of
$$\int_{1}^{8} \frac{1}{\sqrt[3]{x}} \ln x \, dx$$
,
B are constants to be found.
B are constants to be found.

[5]

[5]

5. Find
$$\int (2x+1)\ln x \, \mathrm{d}x.$$
 [5]

$$\int_{0}^{1} 16x e^{4x} dx = 3e^{4} + 1.$$

Show that 0

END OF QUESTION paper

Mark scheme

Question		Answer/Indicative content	Marks	Part marks and guidance	
	1	$u = x$ and $dv = \cos 3x$		integration by parts as far as $f(x) \pm \int g(x) dx$	Check if labelled v,du
		$x \times \frac{1}{3}\sin 3x - \int \frac{1}{3}\sin 3x dx$	A2	A1 for $x \times k \sin 3x - \int k \sin 3x dx$; $k \neq \frac{1}{3}$ or 0	<i>k</i> may be negative
				$\frac{1}{3}\left(\frac{1}{3}\cos 3x\right)_{\text{or}} - \frac{1}{9}\cos 3x$	
				Examiner's Comments	
		$\frac{x}{3}\sin 3x + \frac{1}{9}\cos 3x [+c]_{\text{cao www ISW}}$	A1	The vast majority recognised this question as one suitable for integration by parts, the main errors arising from the integrations of $\cos 3x$ and $\sin 3x$. Provided the method of integrating by parts was fully understood, some credit was given to candidates who used a wrong sign or 3 instead of $\frac{1}{3}$ n the integrals. Candidates were expected to simplify $\frac{1}{3}$, $\frac{1}{3}$ cos 3 <i>x</i>) and $-\frac{1}{9}$ cos 3 <i>x</i> in their answers but, needless to say, they were not expected to multiply their result by 9 to make it look 'better'.	
		Total	4		
	2	$u = \ln 3x$ and dv or $\frac{dv}{dx} = x^8$	M1	integ by parts as far as $f(x)+/-\int g(x)(dx)$	If difficult to assess, x^8 must be integrated, so look for term in x^9
		$\frac{\mathrm{d}}{\mathrm{d}x}(\ln 3x) = \frac{1}{x} \text{ or } \frac{3}{3x}$	B1	stated or clearly used	
		$\frac{x^9}{9}\ln 3x - \int \frac{x^9}{9} \operatorname{their} \frac{\mathrm{d}u}{\mathrm{d}x} (\mathrm{d}x) \mathrm{FT}$	√A1	i.e. correct understanding of 'by parts'	even if ln(3 <i>x</i>) incorrectly differentiated
		© OCR 2017.		Page 2 of 8	Dhysics And Asths Tyter som

aye z ul o

PhysicsAndMathsTutor.com

Indication that
$$\int kx^3 dx$$
 is requiredMtIs before suggesting, endual of lense and before.However, indication that $\int kx^3 dx$ is requiredMt $\frac{x^3}{9} \ln 3x - \frac{x^3}{81}$ or $\frac{1}{9}x^9 \left(\ln 3x - \frac{1}{9}\right)$ ISW (+c) canAit $\frac{1}{9}\frac{x^9}{9}$ to be simplify to $\frac{x^9}{81}$; $\frac{3x^9}{243}$ satisIf newsers, indication the methods in the method of the product in the product in

		Total	5		Integration by Parts
3	i	f in quotient and f + 2 f seen	B1	or $\frac{t(t^2 - 4) + 4t}{(t + 2)}$	or $\frac{(t+2)^3 - 6t^2 - 12t - 8}{(t+2)}$
	i	$-2t$ in quotient $-2\ell - (-2\ell - 4t) = 4t$ seen	B1	$\frac{t(t+2)(t-2)}{(t+2)} + \frac{4t}{t+2}$	$\frac{(t+2)^3}{(t+2)} - \frac{6((t+2)^2 - 4t - 4) + 12t + 8}{(t+2)}$ oe
	i	completion to obtain correct quotient and remainder identified www	B1	$t(t-2) + \frac{4(t+2) - 8}{t+2}$	$(t+2)^2 - 6(t+2) + \frac{12t+16}{t+2}$ oe or B1 for $\frac{t^2(t+2) - 2t^2}{(t+2)}$ both steps needed for final B1
	i	alternatively $\frac{t^{3}}{t+2} \equiv At^{2} + Bt + C + \frac{D}{(t+2)}$	B1	or $t^{\beta} \equiv (At^{\rho} + Bt + O(t+2) + D$	or B1 for $\frac{t^2(t+2) - 2t^2}{(t+2)}$
	i	equate coefficients to obtain correctly A = 1, 0 = 2A + B and $B = -2$ www	B1		B1 for $t^2 + \frac{-2t(t+2) + 4t}{(t+2)}$
	i	0 = 2B + C and $0 = 2C + D$ obtained and solved correctly www	B1	Examiner's Comments Most candidates took the expected route and showed the required result successfully using long division, although a proportion who adopted this approach made sign errors and fudged the rest. A variety of other approaches were also seen. Candidates are reminded that in this type of question, a convincing argument is required – it appeared that some strong candidates lost marks because the answer a andppeared obvious to them.	B1 for $t^2 - 2t + \frac{4(t+2) - 8}{(t+2)}$

i
 Imagender by parts with
$$u = n(t + 2)$$
 and $d = 0$ if to obtain 1($d = \frac{1}{2}$ (dd) cao
 Mit
 Mit
 If must include f and $g f$ must not include a cognition
 Include f and $g f$ must not include a cognition

 i
 $2t^3 \ln(t + 2) - \int \frac{2t^3}{t + 2} (dt) cao
 A1
 Interpretion required for the mark.
 $\int 2(u^2 - 6u + 12 - \frac{8}{u}) du oc

 i
 maxt from part (is soon in integrated), must table award of at least frat Mit
 Mit
 Integration required for the mark.
 $\int 2(u^2 - 6u + 12 - \frac{8}{u}) du oc

 i
 F[t] = 2t^3 \ln(t + 2) \pm \frac{2t^3}{3} \pm 2t^2 \pm 8t \pm 16 \ln(t + 2)$
 A1
 2t^3 \ln(t + 2) - \frac{2t^3}{3} + 2t^2 - 8t + 16 \ln(t + 2)$
 Mit entities down and of the some integration are $u = 4$ and $u^2 = 0$.

 i
 Instrict[2] - F[1)
 Mit entities a connection with gradient field on mark to be a connection with gradient field to mark to connection with gradient field to mark to connection with gradient field to mark to e connection with gradient field to mark to the connection with marks. It was offen in the manipulation following integration that marks were least the method marks. It was offen in the manipulation following integration that marks were least. The mark offen in the marks were least the method marks. It was offen in the marks were least the method marks. It was offen in the marks were least the method marks. It was offen in the marks were least the method marks. It was offen in the marks were least the method marks. It was offen in the marks were least the method$

	$I = (x^2 + r)\ln r - \int (r^2 + r) \frac{1}{2} dr$				Integration by Parts
	$\int (x + x) dx$	M1(AO1.1a)	Correct unsimplified expression		
	$=(x^2+x)\ln x-\int (x+1)\mathrm{d}x$	A1(AO1.1)			
		[5]	Attempt to simplify and integrate		
	$= (x^{2} + x)\ln x - (\frac{1}{2}x^{2} + x) + c$		Obtain fully correct		
			integral	Including + C	
	Total	5			_
		B1	from integration		
	$\frac{1}{4}e^{4x}$ soi				
	$[16]r \times \frac{1}{-}e^{4x} - \int [16] \times \frac{1}{-}e^{4x} dr dr$	M1*	allow sign errors only	ignore limits at this	
	4 J[10]1 4 4	A1		stage	
6	$F[x] = [4x \mathrm{e}^{4x} - \mathrm{e}^{4x}]$	M1dep*	allow bracket errors,		
	F[1] – F[0]		but substitution of limits must be shown	NB double negative may be implied by plus sign	
	= 3e ⁴ + 1 NB AG	A1	convincing intermediate step needed eg	no recovery from bracket errors for	
		[5]	$4e^4 - e^4 - (0 - e^0)$	this mark	

				Integration by Parts
			Examiner's Comments	
			marks. A few candidates integrated x when applying integration by parts, and more often than not the correct result mysteriously appeared from wrong working.	
	Total	5		