1. The temperature of a freezer is -20°C. A container of a liquid is placed in the freezer. The rate at which the temperature, θ°C, of a liquid decreases is proportional to the difference in temperature between the liquid and its surroundings. The situation is modelled by the differential equation

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -k(\theta + 20)$$

where time t is in minutes and k is a positive constant.

i. Express θ in terms of *t*, *k* and an arbitrary constant.

[3]

Initially the temperature of the liquid in the container is 40°C and, at this instant, the liquid is cooling at a rate of 3°C per minute. The liquid freezes at 0°C.

ii. Find the value of *k* and find also the time it takes (to the nearest minute) for the liquid to freeze.

[5]

The procedure is repeated on another occasion with a different liquid. The initial temperature of this liquid is 90°C. After 19 minutes its temperature is 0°C.

- iii. Without any further calculation, explain what you can deduce about the value of *k* in this case.
- [1]
- 2. At time *t* seconds, the radius of a spherical balloon is *r* cm. The balloon is being inflated so that the rate of increase of its radius is inversely proportional to the square root of its radius. When t = 5, r = 9 and, at this instant, the radius is increasing at 1.08 cm s⁻¹.
 - i. Write down a differential equation to model this situation, and solve it to express *r* in terms of *t*.
 - [7]

[2]

ii. How much air is in the balloon initially?

[The volume of a sphere is $V = \frac{4}{3}\pi r_{.]}^3$

3. A container in the shape of an inverted cone of radius 3 metres and vertical height 4.5 metres is initially filled with liquid fertiliser. This fertiliser is released through a hole in the bottom of the container at a rate of 0.01 m³ per second. At time *t* seconds the fertiliser remaining in the container forms an inverted cone of height *h* metres.

[The volume of a cone is
$$V = \frac{1}{3}\pi r^2 h_{...}$$
]

i. Show that
$$h^2 \frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{9}{400\pi}$$
.

- ii. Express *h* in terms of *t*.
- iii. Find the time it takes to empty the container, giving your answer to the nearest minute.
- 4. In the year 2000 the population density, *P*, of a village was 100 people per km², and was increasing at the rate of 1 person per km² per year. The rate of increase of the population density is thought to be inversely proportional to the size of the population density. The time in years after the year 2000 is denoted by *t*.
 - i. Write down a differential equation to model this situation, and solve it to express P in terms of t.
 - ii. In 2008 the population density of the village was 108 people per km² and in 2013 it was 128 people per km². Determine how well the model fits these figures.

[2]

[6]

© OCR 2017.

i.

5.

$$\frac{16+5x-2x^2}{(x+1)^2(x+4)}$$
 Express $(x+1)^2(x+4)$ in partial fractions.

Differential Equations

[2]

[5]

[4]

ii. It is given that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(16+5x-2x^2)y}{(x+1)^2(x+4)}$$

and that $y = \frac{1}{256}$ when x = 0. Find the exact value of y when x = 2. Give your answer in the form Ae^{n} .

[7]

[5]

- 6. Helga invests £4000 in a savings account. After *t* days, her investment is worth £*y*. The rate of increase of *y* is *ky*, where *k* is a constant.
 - (a) Write down a differential equation in terms of *t*, *y* and *k*. [1]
 - (b) Solve your differential equation to find the value of Helga's investment after t days.
 Give your answer in terms of k and t.
 [4]

$$k = \frac{1}{365} \ln \left(1 + \frac{r}{100} \right)$$

It is given that 100 where r% is the rate of interest per annum. During the first year the rate of interest is 6% per annum.

(c) Find the value of Helga's investment after 90 days. [2]

After one year (365 days), the rate of interest drops to 5% per annum.

(d) Find the total time that it will take for Helga's investment to double in value. [5]

7. A new bird species is introduced into a region where it has previously been absent. Initially 20 birds are introduced. The rate of increase of the number *N* of birds after *t* years is modelled by

$$\frac{1}{1000}$$
 (10000 – N^2).

(a)
$$N = \frac{100(3e^{0.2t} - 2)}{(3e^{0.2t} + 2)}.$$

- (b) Hence explain what will happen to the number of birds over a long period of time, as predicted by the model.
- (c) State one limitation of the model.
- 8. A tank is shaped as a cuboid. The base has dimensions 10 cm by 10 cm. Initially the tank is empty. Water flows into the tank at 25 cm³ per second. Water also leaks out of the tank at $4h^2$ cm³ per second, where *h* cm is the depth of the water after *t* seconds. Find the time taken for the water to reach a depth of 2 cm. [9]
- 9. A scientist is attempting to model the number of insects, N, present in a colony at time t weeks. When t = 0 there are 400 insects and when t = 1 there are 440 insects.
 - (a) A scientist assumes that the rate of increase of the number of insects is inversely proportional to the number of insects present at time t.
 - (i) Write down a differential equation to model this situation. [1]
 - (ii) Solve this differential equation to find *N* in terms of *t*.

(b) In a revised model it is assumed that
$$\frac{dIV}{dt} = \frac{IV}{3988e^{0.2t}}$$
. Solve this differential [6] equation to find *N* in terms of *t*.

1 17

NT2

- (c) Compare the long-term behaviour of the two models.
- 10. The gradient of the curve y = f(x) is given by the differential equation

$$(2x-1)^3 \frac{dy}{dx} + 4y^2 = 0$$

and the curve passes through the point (1, 1). By solving this differential equation show that

[2]

[7]

[1]

[4]

[2]

Differential Equations

$$f(x) = \frac{ax^2 - ax + 1}{bx^2 - bx + 1} ,$$

where *a* and *b* are integers to be determined.

11.

The gradient function of a curve is given by $\frac{dy}{dx} = \frac{x^2 \sin 2x}{2 \cos^2 4y - 1}$

(a) Find an equation for the curve in the form f(y) = g(x)

The curve passes through the point $(\frac{1}{4}\pi, \frac{1}{12}\pi)$.

- (b) Find the smallest positive value of y for which x = 0.
- 12. As a spherical snowball melts its volume decreases. The rate of decrease of the volume of the snowball at any given time is modelled as being proportional to its volume at that time. Initially the volume of the snowball is 500 cm³ and the rate of decrease of its volume is 20 cm³ per hour.
 - (a) Find the time that this model would predict for the snowball's volume to decrease to [7] 250 cm³.
 - (b) Write down one assumption made when using this model.
 - (c) Comment on how realistic this model would be in the long term. [1]

END OF QUESTION paper

© OCR 2017.

[9]

[6]

[1]

[4]

Mark scheme

Que	stion	Answer/Indicative content	Marks	Part marks and guidance
1	i	$\int \frac{1}{\theta + 20} \mathrm{d}\theta = \int -k \mathrm{d}t$	M1	$\frac{\mathrm{d}t}{\mathrm{or\ invert\ each\ side:}} = -\frac{1}{k(\theta + 20)} \qquad \qquad \frac{1}{\mathrm{Must\ see\ }\frac{1}{\theta + 20}};$ ignore posn 'k'
	i	$ln(\theta + 20) = -kt(+c)$ or equivalent	A1	"Eqn A"
				"Eqn B"
				Examiner's Comments
	i	$\theta = Ae^{-kt} - 20$ oe (i.e. $0 = e^{-kt + c} - 20$)	A1	The majority of candidates used the method of 'separating the variables' and generally integrated each side correctly. However, many did not go further or failed to rearrange this equation correctly in order to express θ in terms of <i>t</i> , <i>k</i> and an arbitrary constant. Many candidates thought that '+ c' should appear only at the end. A very few inverted each side and were generally less successful because of the position of ' <i>K</i> ' immediately alongside the θ + 20 in the denominator.
	ii	(-)3 = -k(40 + 20)	M1	Using $t = 0, \theta = 40, \frac{d\theta}{dt} = (-)3$ equation
	ii	$k = \frac{1}{20} \text{oe}$	*A1	$k = -\frac{1}{20}$ Examiner's Comments There were some very good and neat solutions to this part, particularly by those who read the question carefully before delving into its solution. Even though <i>k</i> was defined to be a

					positive constant, a large number of candidates obtained $k = -\frac{1}{20}$. A few interpreted the statement "at this instant, the liquid is cooling" to imply that there was a constant decrease of 3 degrees every minute. However, many candidates attempted to use all the information correctly and found <i>k</i> , their own constant of integration and, finally, the time taken for the liquid to freeze.	Differential Equations
		ii	Subst $t = 0$, $\theta = 40$ & their k (where necessary) into their Eqn A or their Eqn B and solve for the arbitrary constant	M1		
		ii	Subst θ = 0 & their values of k and the arbitrary constant into their Eqn A or their Eqn B	M1		
		ii	<i>t</i> = 21.9722 = 22 minutes cao www	dep* A1		
		iii	<i>k</i> is larger	B1	Examiner's Comments Most candidates stated that k must be larger, but explanations were sketchy.	
	1		Total	9		
2		i	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{k}{\sqrt{r}} \text{oe}$	B2	$\frac{\mathrm{d}r}{\mathrm{d}t} = ; \mathrm{B1} \text{ for } \frac{k}{\sqrt{r}}$	$\frac{\mathrm{d}r}{\mathrm{SR: B1 \ for}} \propto \frac{1}{\sqrt{r}}$
		i	Sep variables of their diff eqn (or invert) & integrate each side, increasing powers by 1 (or $\frac{1}{r} \rightarrow \ln r$)	*M1	their d.e. must be $\frac{\mathrm{d}r}{\mathrm{d}t}$ (or $\frac{\mathrm{d}t}{\mathrm{d}r}$) = f(r)	Ignore absence of '+c' after integration

i

$$\frac{dr}{dt} = 1.08, r = 9$$

into
 Mit
 $\frac{dr}{dt} (or \frac{dr}{dr}), s it
 $(r = 3.24 \text{ tot M mark, not A})$

 i
 Subset $\frac{dr}{dt} = 1.08, r = 9$
into the of $\frac{dr}{dt}$
 Subset $\frac{dr}{dt} = 1.08, r = 9$
into the of $\frac{dr}{dt}$
 $(r = 3.24 \text{ tot M mark, not A})$
 $(r = 3.24 \text{ tot M mark, not A})$

 i
 Subset $\frac{dr}{dt} = 1.08, r = 1.80$
 A1
 An involve 1-of have
 $(r = 1.61 \text{ cm})^2$

 i
 Correct values of ciprostably = 1.80 r - 1.80
 A1
 Answer rocated in form $r = 82$
 Subset $\frac{dr}{dr} = 1.80 \text{ cm}^2$

 i
 $r = (4.86t + 2.7)^{\frac{3}{2}}$
 Subset $\frac{dr}{dr} = 0$ into score the introduces to termulate a surge
statement includes to termulate a surge
 Subset $\frac{1}{r} = r(r + 1.80 \text{ cm}^2)^{\frac{3}{2}}$
 A1
 Answer rocated in form $r = 82$

 Subset $r = 0$ into any version of $\frac{1}{2}$ (subset $r = 0$ into any version of $\frac{1}{2}$ (subset $r = 0$ into any version of $\frac{1}{2}$ (subset $r = 0$ into any version of $\frac{1}{2}$ (subset $r = 0$ into any version of $\frac{1}{2}$ (subset $r = 0$ into any version of $\frac{1}{2}$ (subset $r = 0$ into any version of $\frac{1}{2}$ (subset $r = 0$ into any version of $\frac{1}{2}$ (subset $r = 0$ into any version of $\frac{1}{2}$ (subset $r = 0$ into any version of $\frac{1}{2}$ (subset $r = 0$ into any version of $\frac{1}{2}$ (subset $r = 0$ into any version of $\frac{1}{2}$ (subset $r = 0$ into any version of $\frac{1}{2}$ (subset $r = 0$ into any version of $\frac{1}{2}$ (subset $r = 0$ into any version of $\frac{1}{2}$ (subset $r = 0$ into any version of $\frac{1}{2}$ (subset $r = 0$ into any version of $\frac{1}{2}$ (subset $r = 0$ into any vers$

				Examiner's Comments	Differential Equations
				Most understood what to do, gaining the method mark, and a few obtained the correct result.	
		Total	9		
3	i	$\frac{\mathrm{d}V}{\mathrm{d}t} = \pm 0.01$	B1		
	i	by similar triangles, $\frac{h}{4.5} = \frac{r}{3}$	B1	$r = \frac{2h}{3} \text{ oe}$	
	i		B1	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{4}{9}\pi h^2 \text{ oe}$	
	i	$\frac{\mathrm{d}h}{\mathrm{d}t} = \pm 0.01 \times \text{their} \frac{\mathrm{d}h}{\mathrm{d}V}$ oe	M1	use of Chain rule	may follow from incorrect differentiation: expressions must be a function of either r or h or both
				completion to given result www Examiner's Comments	
	i	$-0.01 = (\frac{4}{9}\pi h^2) \times \frac{dh}{dt}$ oe soi	A1	This defeated all but the best candidates. Many scored an $\frac{dV}{dt} = -0.01$ easy B1 for $\frac{dt}{dt}$ [although a good number missed out on this because they wrote $\frac{dh}{dt} = -0.01$ nstead).	$h^2 \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{-0.09}{4\pi} = \frac{-9}{400\pi}$
		@ OCD 2017		Thereafter very few made any progress: the need to eliminate r was often not appreciated. Those who did spot the relationship between h and r often went on to score full marks. Having obtained V in terms of h only, a few strong	

			candidates derived the required result by considering $V(t) = 13.5\pi - 0.01t$ and differentiating.	Differential Equations
ii	$\int h^2 dh = \int \frac{-9}{400\pi} dt$ $\frac{h^3}{3} = \frac{-9}{400\pi} t(+c)$	M1	separation of variables	if no subsequent work, integral signs needed, but allow omission of d <i>h</i> or d <i>t</i> , but must be correctly placed if present;
ii	$\frac{h^3}{3} = \frac{-9}{400\pi}t(+c)$	A1		
ii	substitution of $t = 0$ and $h = 4.5$ in their expression following integration	M1	expression must include c and powers must be correct on each side	
			allow – 0.0215 or – 0.02148591r.o.t to 4 sf or more and similarly 91.125	
ii	$h = \sqrt[3]{\frac{729}{8} - \frac{27t}{400\pi}}$ oe isw	A1	Examiner's Comments This proved surprisingly difficult for many. Those who did separate the variables either differentiated <i>h</i> ² instead of integrating, or omitted the constant of integration and made no further progress. Those who did achieve a correct value for " <i>c</i> " often went on to spoil their answer, or simply left the equation in implicit form.	91.125 = ⁷²⁹ / ₈
	set $h = 0$ and solve to obtain positive t	M1	or $(t = 1)$ $\frac{1}{3}\pi \times 3^2 \times 4.5 \div 0.01$ (= 1350 π)	NB 1350π = 4241.150082
iii	71 minutes cao	A1	Examiner's Comments Most realised that setting $h = 0$ was required here. Due to earlier errors, this sometimes led to a negative value for t ; surprisingly this did not always set the alarm bells ringing. A good proportion of candidates who did everything right lost an easy mark because they failed to convert the answer to	

				minutes. Some candidates who had made no progress earlier, were astute enough to realise that the correct answer could be obtained without the result from part (ii), as the rate of change of volume was constant.	Differential Equations
		Total	11		
4	i	$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{k}{P}$	B1	or $\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{1}{kP}$	<i>k</i> should be unspecified at this stage
	i	$\frac{\mathrm{d}P}{k=100 \text{ from }} = \frac{k}{P}$	B1	or $k = 0.01$ from $\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{1}{kP}$	may be seen later
	i	$\int \mathcal{P} d\mathcal{P} = \int (\text{their } k) dt$	M1*	allow $k = 1$	allow omission of ∫ and recovery of omission of one operator for M1*A1
	i	$\frac{P^2}{2} = kt + c$	A1	$\int_{\text{or}} t = \frac{P^2}{2k} + d$	if M0 , SC2 for $\ln P = kt + c$ thereafter only M1 may be earned
	i	substitution of $t = 0$ and $P = 100$	M1dep*	may follow incorrect algebraic manipulation, but equation must include c (or d)	NB <i>c</i> = 5000 or <i>d</i> = – 50
	i	$P = \sqrt{10000 + 200t}$ or $10\sqrt{100 + 2t}$ or $P = \sqrt{200(50 + t)}$ isw cao	A1		allow recovery from eg use of <i>x</i> for <i>P</i> throughout, but withhold final A1 for eg $x = \sqrt{10000 + 200t}$
				Examiner's Comments	
				A surprising number of candidates did not seem to	
				understand inverse proportion, and setting up the initial equation elicited a wide range of incorrect responses. Those	
	i			who did set up the equation correctly usually went on to earn	
				at least four marks out of six. Finding k caused more difficulty	
				than expected: many candidates mistakenly assuming that $t = 1$, $P = 101$ was a valid pair of values, instead of working	
				with the information given in the question. In some cases	

				rearranging to make ${\cal P}$ the subject of the formula proved troublesome.	Differential Equations
	ii	<i>t</i> = 8, <i>P</i> = 107.7 or 108 so model was a good fit in 2008 oe	B1	or $t = 8.3(2)$ when $P = 108 + \text{comment}$	value of <i>P</i> or <i>t</i> must be found and correct comment made in each case; comments may be in same sentence.
				or <i>t</i> = 31.9(2) or 32 when <i>P</i> = 128 + comment	if B0B0, SC1 for both values found no FT marks available
	ii	t = 13, $P = 112(.2)$, so model was not appropriate in 2013 oe	B1	comments may be in same sentence, but both values must be referenced	comments on trends, extrapolation etc do not score just ticks / crosses etc do not score
				Examiner's Comments	
	ii			Full marks were rarely achieved in this case. Those who did find the correct values often speculated on future trends rather than commenting on the two values they had found. It was necessary to have earned at least four marks in part (i) to score in this part.	
		Total	8		
5	i	$\frac{A}{(x+4)} + \frac{B}{(x+1)} + \frac{C}{(x+1)^2}$	B1		may be awarded later
	i	$[16 + 5x - 2x^2] = A(x + 1)^2 + B(x + 1)(x + 4) + O(x + 4)$	M1		allow sign errors only
	i	$\mathcal{A} = -4$	A1	NB 36 = -9 <i>A</i>	if BOMO , allow SC3 for
	i	<i>C</i> = 3	A1	9 = 3 <i>C</i>	$\frac{2x+5}{(x+1)^2} - \frac{4}{x+4}$

Differential Equations

$$\frac{1}{1} \int \frac{dy}{y} = \int \frac{16 + 5x - 2x^2}{(x+1)^2(x+4)} dx$$

$$\frac{3}{(x+1)^2} + \frac{2}{(x+1)} - \frac{4}{(x+4)} dx$$

$$\frac{3}{(x+1)^2} + \frac{2}{(x+1)} - \frac{4}{(x+1)^2} dx$$

$$\frac{3}{(x+1)^2} + \frac{2}{(x+1)} - \frac{4}{(x+1)^2} dx$$

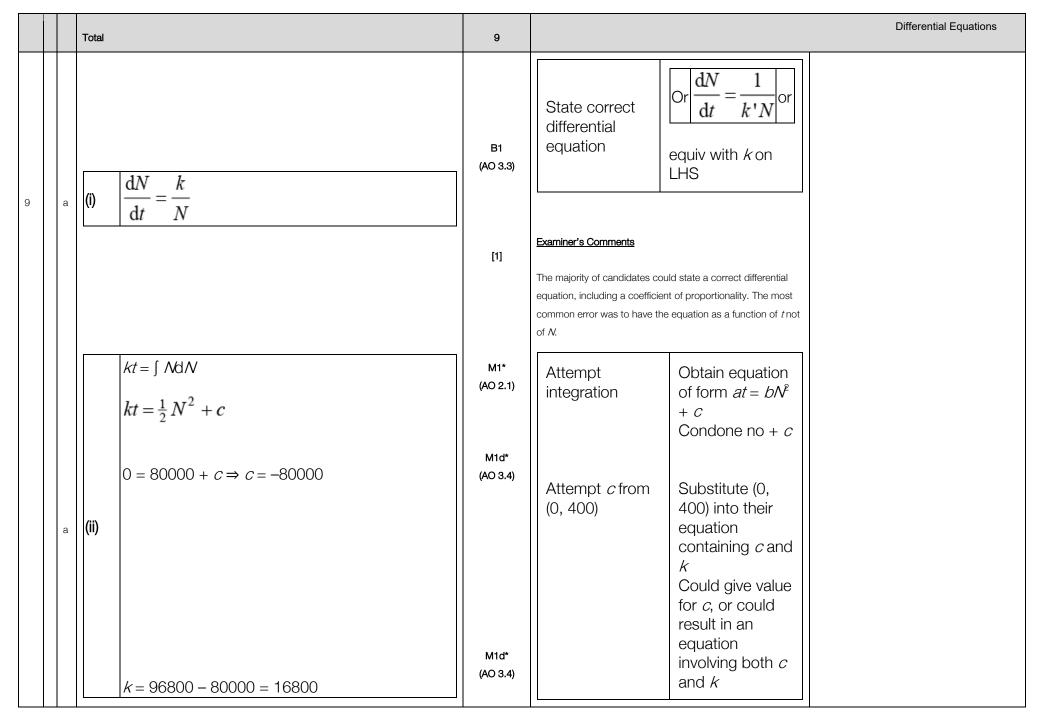
$$\frac{3}{(x+1)^2} + \frac{2}{(x+1)} - \frac{4}{(x+1)^2} dx$$

$$\frac{3}{(x+1)^2} + \frac{2}{(x+1)^2} dx$$

$$\frac{3}{(x+1)^2} + \frac{2}{(x+1)^2} dx$$

$$\frac{3}{(x+1)^2} + \frac{2}{(x+1)^2} + \frac{2}{(x+1)^2} dx$$

$$\frac{3}{(x+1)^2} + \frac{2}{(x+1)^2} + \frac{2}{(x+1)^2} dx$$


$$\frac{3}{(x+1)^2} + \frac{2}{(x+1)^2} d$$

		$y = \frac{e^2}{144}$ oe	A1	for <i>c</i>	Differential Equations eg to find expression for y Examiner's Comments The separation of variables caused problems for many, but most recognised the link with part (i) and worked with their partial fractions. The method was often well understood, but only a minority of candidates had the stamina and attention to detail to go on to the end and achieve the correct result.
		Total	12		
		$\frac{dy}{dt} = ky$	B1(AO3.1b)		
6	1	$\frac{dt}{dt} = hy$	[1]		
		$\frac{dy}{y} = kdt$ $[\ln y]_{4000}^{y} = k[t]_{0}^{t} \text{ or } \ln y = kt + c$ $\ln \frac{y}{4000} = kt \text{ or } \ln 4000 = 0 + c$ $y = 4000e^{kt}$	M1(AO1.1a) M1(AO1.1) A1(AO1.1) A1(AO1.1) [4]	Attempt separation of variables Correct integrals and limits Correct substitution in correct integral	
		$\begin{array}{c} & \frac{90}{365} \ln 1.06 \\ = 4057.89 \end{array}$	M1(AO1.1) A1(AO1.1) [2]	FT their part (b) BC	

						Differential Equations
		After 1 year, increased by factor 1.06				
		Require further increase by factor $\frac{2}{1.06}$	M1(AO3.1b)	May be implied		
			M1(AO1.1)	Attempt to form equation		
		$e^{\frac{t}{365}\ln 1.05} = \frac{2}{1.06}$	A1(AO2.1)	with 1.05 and 1.06 Correct equation		
	d	$\frac{t}{365}\ln 1.05 = \ln \frac{2}{1.06}$	M1(AO1.1)	Attempt to remove logs		
				Allempt to remove logs		
		$t = \frac{365}{\ln 1.05} \times \ln \frac{2}{1.06}$	A1(AO3.2a)		OR	
		= 4750		isw	BC	
		Total number of days = 5115	[5]			
		Total	12			
		$\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{1}{1000} \ (10000 - N^2)$	M1(AO 3.3)			
			M1(AO 1.1)			
_		$\frac{dN}{10000 - N^2} = \frac{1}{1000} dt$ $\frac{1}{200} \left(\frac{1}{100 - N} + \frac{1}{100 + N}\right) dN = \frac{1}{1000} t$	M1(AO 3.1b)	Attempt separate variables		
7	а	$\frac{1}{200} \left(\frac{1}{100-N} + \frac{1}{100+N}\right) dN = \frac{1}{1000} t$	A1(AO 2.1)	Attempt PFs with correct		
		$\ln\frac{100+N}{100-N} = 0.2t + c$	M1(AO 1.1)	denominators Equation of form		

		when $t = 0$, $N = 20$ hence $c = \ln (3 / 2)$	A1(AO 2.1)	100-1V Without
		$\ln \frac{2(100+N)}{3(100-N)} = 0.2t$ $\frac{2(100+N)}{3(100-N)} = e^{0.2t}$	A1(AO 1.1) [7]	Attempt find <i>c</i> with $t = 0$ and $N = 20$ + <i>c</i>
		3(100-N) $N = \frac{100(3e^{0.2t}-2)}{(3e^{0.2t}+2)}$ AG		Any correct equation in <i>N</i> & <i>t</i> after antilog Correctly rearrange to give answer
	b	No. of birds increases and tends to 100	E1(AO 2.2b) E1(AO 3.4) [2]	
	с	Eg <i>N</i> is discrete but modelled by continuous	E1(AO 3.5b) [1]	No account of external factors eg weather
		Total	10	
8		$V = 100h \implies \frac{\mathrm{d}v}{\mathrm{d}h} = 100$ $\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t} = 100 \frac{\mathrm{d}h}{\mathrm{d}t} \qquad [= 25 - 4h^2]$	M1(AO 3.4) A1(AO 1.2) M1(AO	
			3.1b)	

$\Rightarrow 25 - 4h^2 = 100 \frac{dh}{dt}$ oe				Differential Equations
$\rightarrow 25$ $4n$ 100 dt		Equate 25 – 4 <i>h</i> ²		
	M1(AO 2.5)	to their		
a ² . at		$\frac{\mathrm{d}v}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t}$		
$\Rightarrow \int_0^2 \frac{1}{25-4h^2} dh = \int_0^t \frac{1}{100} dt$				
2 0 2 0	M1(AO 3.4)	A +++		
		Attempt integration with		
$1 \int_{t}^{2} 1 + 1 = 1 \int_{t}^{t} 1 = 1$		correct		
$\Rightarrow \frac{1}{10} \int_0^2 \frac{1}{5+2h} + \frac{1}{5-2h} \mathrm{d}h = \int_0^t \frac{1}{100} \mathrm{d}t$	A1(AO 2.1)	denominator on LHS		
	M1(AO 1.2)	Attempt partial		
		fractions with		
	A1(AO	correct		
	2.2a)	denominators on LHS		
$\Rightarrow \frac{1}{10} \times \frac{1}{2} \left[\ln(5+2h) - \ln(5-2h) \right]_0^2 = \frac{t}{100}$				
$ = \frac{10}{10} \times \frac{10}{2} \left[\frac{100}{100} + \frac{2\pi}{100} - \frac{100}{100} + $	A1(AO 3.2a)	Correct partial fractions		
	0.24)	ITACIONS		
\Rightarrow 5ln 9 = t oe	[9]	Correct integral;		
		ignore limits		
			10.9861	
Time when depth is 2 cm is 11.0 seconds (3 sf)		Any correct		
		numerical expression for <i>t</i>		
		Allow 11 seconds		

		Attempt <i>k</i> from (1, 440)	depending on structure	Differential Equations
$N = \sqrt{(33600t + 160000)}$	A1 (AO 1.1) [4]	Correct equation for <i>N</i>	Substitute (1, 440) into their equation containing <i>c</i> (possibly now numerical) and <i>k</i> If <i>c</i> is numerical then value of <i>k</i> must be attempted If this gives second equation in <i>c</i> and <i>k</i> then the equations need to be solved simultaneously for <i>c</i> and <i>k</i> to award M1 <i>N</i> must be the subject of the equation	
		Examiner's Comments		

		far, a few candidates did not ga making errors when rearranging requested form, such as squar	g the equation to the	Differential Equations
$\int 3988 N^2 dN = \int e^{-0.2t} d^t$	M1 (AO 3.1a) M1*	Separate variables and attempt integration	Must be valid method to separate variables so allow coefficient slips only Some attempt to integrate, but may not be correct BOD if no integral signs,	
$-3988N^{-1} = -5e^{-0.2t} + c$ OR	(AO 1.1a)	Integrate to obtain answer of	as long as integration is actually attempted	
$-N^{-1} = -\frac{5}{3988} e^{-0.2t} + c$	A1 (AO 1.1)	correct form Obtain correct	Obtain integral of the form $aN^{-1} = be^{-0.2t} + c$	
$-9.97 = -5 + c \Rightarrow c = -4.97$	M1d* (AO 2.2a)	integral	or equiv Condone no $+ c$	
OR $-\frac{1}{400} = -\frac{5}{3988} + C \Longrightarrow C = -\frac{497}{398800}$		Attempt <i>c</i> from (0, 400) or (1, 440)	Any equivalent form As far as attempting numerical value for <i>c</i>	

$\frac{3988}{N} = 5e^{-0.2t} + 4.97$ OR $\frac{1}{N} = \frac{5}{3988}e^{-0.2t} + \frac{497}{398800}$ $N = \frac{3988}{5e^{-0.2t} + 4.97}$	M1d* (AO 1.1) A1 (AO 1.1) [6]	Attempt to make <i>N</i> the subject	NB (0, 400) gives –4.97, (1, 440) gives an answer which rounds to –4.97 Equation may no longer be correct Using correct algebraic processes throughout, but allow sign slips – this includes any rearrangement attempt made prior to attempting <i>c</i> Must involve a <i>c</i> , either numerical or still as <i>c</i>	Differential Equations
			Any correct equation of form $N = \dots$	

			Examiner's Comments		Differential Equations
			Candidates identified the need before integrating and many m The majority of candidates cho was rather than incorporating it caused problems for some who in a form that could be integrat most common error. When find integration most candidates op given. Once again, not all cand correct method to find <i>N</i> in terr error was to simply invert each equation.	ade a good attempt to do so. se to leave the 3988 where it it with the term in <i>N</i> . This en rewriting the right-hand side ed, with $3988e^{-0.2t}$ being the ding a value for the constant of oted to use the first condition idates were able to use the ms of <i>t</i> ; the most common	
с	Model in (a) predicts that population will continue to increase	E1 (AO 3.5a)	Comment about continuing to increase	Allow comments such as tending to infinity Any additional comments must also be correct so E0 for eg 'will always increase at a steady rate' but E1 for 'will always increase but the rate of increase will	
	Model in (b) predicts that population will tend towards a limit of 802	E1 (AO 3.5a)	Comment about tending towards a limit of 802	Allow a limit of 803 or 802.4 Must come from a fully correct function	

			Differential Equations
	[2]	-	
		Examiner's Comments	
		When considering the first model, candidates simply needed	
		-	
		the second model would predict that the population will tend	
		-	
		ů	
Total	13		
$(2x-1)^3 \frac{dy}{dx} + 4y^2 = 0$			
$-\frac{1}{4}\int \frac{dy}{v^2} = \int \frac{dx}{(2x-1)^3}$	M1(AO 2.5)E	Attempt to	
		-	
$\int \frac{\mathrm{d}y}{y^2} = -\frac{1}{y}$	A1(AO 1.1)E	Vanadies	
$dx (2x-1)^{-2}$	M1(AO 1.1)E		
$\int \frac{1}{(2\pi - 1)^3} = \frac{1}{(2)(-2)}$	A1(AO	M1 for $k(2x - 1)^{-2}$	
	Total $(2x-1)^{3} \frac{dy}{dx} + 4y^{2} = 0$ $-\frac{1}{4} \int \frac{dy}{y^{2}} = \int \frac{dx}{(2x-1)^{3}}$ $\int \frac{dy}{y^{2}} = -\frac{1}{y}$ $\int \frac{dx}{(2x-1)^{3}} = \frac{(2x-1)^{-2}}{(2)(-2)}$	Total13 $(2x-1)^3 \frac{dy}{dx} + 4y^2 = 0$ 13 $(-\frac{1}{4} \int \frac{dy}{y^2} = \int \frac{dx}{(2x-1)^3}$ M1(AO $2.5 E$ A1(AO $\int \frac{dy}{y^2} = -\frac{1}{y}$ 1.1)E	$\begin{bmatrix} comments must \\ also be correct \end{bmatrix}$ $\begin{bmatrix} comments must \\ b comments must \\ $

$\frac{1}{4y} = -\frac{1}{4(2x-1)^2} + c, \ (1,1) \Longrightarrow c = \dots$	M1(AO 2.1)C			Differential Equations
$\frac{1}{y} = -\frac{1}{(2x-1)^2} + 2$ $\frac{1}{y} = \frac{2(2x-1)^2 - 1}{(2x-1)^2}$	A1(AO 2.2a)A M1(AO 3.1a)A	Use of (1, 1) to find <i>c</i> – dependent on the previous two M marks and substituted into correct form Oe	Or re–write in terms of y	
$y = \frac{(2x-1)^2}{2(2x-1)^2 - 1}$ $y = \frac{4x^2 - 4x + 1}{8x^2 - 8x + 1}$	M1(AO 1.1)A A1(AO 2.2a)A [9]	Correct method for combining both terms on rhs (dependent on previous M mark) before taking the reciprocal Taking the reciprocal (dependent on previous M marks) and making y the subject a = 4, b = 8	Remove tripledecker fractions	

				Examiner's Comments The responses to this final question in the pure section were mixed with examiners reporting a mixture of excellent responses followed by those that struggled with both the integration and the resulting algebraic manipulation required to obtain the answer in the required form. While most correctly separated the variables and wrote $\begin{bmatrix} -\frac{1}{4} \int \frac{dy}{y^2} = \int \frac{dx}{(2x-1)^3} & \text{many}\\ \text{candidates} \end{bmatrix}$ had issues with the placement of the fraction on the left-hand side with examiners reporting that frequently this became a 4 rather than remaining as a quarter. While many candidates correctly integrated and remembered to include an arbitrary constant many decided to re-arrange their equation before attempting to find this constant; candidates are advised that in the majority of situations it is probably wisest to work out the + <i>c</i> immediately. Of those that obtained a correct particular solution to this differential equation, for example, $\begin{bmatrix} 1\\y = -\frac{1}{(2x-1)^2} + 2 & \text{many did not}\\ \text{know} \end{bmatrix}$ the correct method for obtaining the result for f(x) in the required form. Many candidates took the reciprocal of each term separately rather than combining all relevant fractions first before taking the reciprocal and then expanding the brackets.	Differential Equations
		Total	9		
11	а	$\int (2 \cos^2 4y - 1) dy = \int x^2 \sin 2x dx$ $2 \cos^2 4y - 1 = \cos 8y$	M1 (AO 1.1a) M1 (AO	Separate variables	

		3.1a)			Differential Equations
		3. Taj	Attempt use of double angle formula	Obtain ±cos8 <i>y</i>	
	$\int \cos 8y \mathrm{d}y = \frac{1}{8} \sin 8y + c_1$	A1 (AO 1.1)			
	$\int x^2 \sin 2x dx = -\frac{1}{2}x^2 \cos 2x + \int x \cos 2x dx$	M1 (AO 3.1a)	Obtain correct integral	Condone no + <i>C</i> 1	
	$= -\frac{1}{2}x^2\cos 2x + \frac{1}{2}x\sin 2x - \int \frac{1}{2}\sin 2x dx$	M1 (AO 1.1)	Attempt integration by		
		A1 (AO 1.1)	parts once		
	$= -\frac{1}{2}x^{2}\cos 2x + \frac{1}{2}x\sin 2x + \frac{1}{4}\cos 2x + c_{2}$	[6]	Attempt second integration by parts		
	$\frac{1}{8}\sin 8y = -\frac{1}{2}x^2\cos 2x + \frac{1}{2}x\sin 2x + \frac{1}{4}\cos 2x + c$		parts	Condone no +	
			Obtain correct integral	<i>C</i> ₂	
b	$\sin\frac{8}{12}\pi = -4\left(\frac{1}{4}\pi\right)^2 \cos\frac{\pi}{2} + 4\left(\frac{1}{4}\pi\right) \sin\frac{\pi}{2} + 2\cos\frac{\pi}{2} + c.$	M1 (AO 1.1)	Attempt <i>c</i> , using $x = \frac{1}{4}\pi$, $y = \frac{1}{12}\pi$		
	$c = \frac{1}{2}\sqrt{3} - \pi$	A1 (AO 1.1)	Obtain		

		$\sin 8y = 2 + \frac{1}{2}\sqrt{3} - \pi$	M1 (AO 3.1a)	correct value for <i>c</i> for their correct equation Condone decimal equiv (-2.276)	$\mathop{\rm eg}_{\rm eg} c = \pi - \frac{1}{2}\sqrt{3}_{\rm if}$ their <i>c</i> on	Differential Equations
		8 <i>y</i> = (-0.279), 3.421 <i>y</i> = (-0.035), 0.428	A1 (AO 1.1)	Attempt positive value for y when x = 0	LHS, or $c = \pm \left(\frac{1}{16}\sqrt{3} - \frac{1}{8}\pi\right)$ if fractions not yet cleared	
		<i>y</i> = 0.428	[4]	Obtain correct value for <i>y</i>	A0 if extra values	
		Total	10			
12	а	$\frac{\mathrm{d}V}{\mathrm{d}t} = -kV$ $-20 = -k \times 500 \text{ so } k = 0.04$	B1(AO 3.3) B1(AO 3.3) M1(AO 1.1)	Set up correct differential equation Correct value fo – may be seen later	Allow k for $-k$ r k Or $k = -0.04$	

				Differential Equations
$\int -0.04 dt = \int \frac{1}{V} dV$	A1(AO 1.1)	Separate variables		
		and attempt integration		
$-0.04t = \ln V + c$	M1* (AO	integration		
	3.4)	Correct integral – A		
	M1dep*(AO	could still be in h terms of k	here	
$c = -\ln 500$	3.4)			
	A1 (AO 3.3)	Use $t = 0$, $V = 500$ to find c		
$-0.04t = \ln 250 - \ln 500$	[7]			
		Attempt to find t		
<i>t</i> = 17.3 hours	B1(AO 3.3)	when $V = 250$		
		Obtain 17.3		
	B1(AO 3.3)	,	Jnits needed 17.3286	
Alternate method		minutes)	17.3200	
$\frac{\mathrm{d}V}{\mathrm{d}t} = -kV$	M1(AO 1.1a)			
dt = kt				
$-20 = -k \times 500$ so $k = 0.04$	M1(AO 3.4)		Allow k for $-k$	
	M1(AO 3.4)	differential equation		
T 250	MT(AO 3.4)	Correct value for k	Or <i>k</i> = −0.04	
$\int_{0}^{T} -0.04 dt = \int_{0}^{250} \frac{1}{V} dV$	A1(AO 1.1) A1(AO 3.4)	– may be seen		
	AT(AU 3.4)	later		
	[7]	Separate variables		
		and attempt integration of LHS		
			OR	
		,	Use of <i>t</i> limits 0	
		500 a	and $T(\text{accept } t = $	

	-0.04 <i>T</i> = -0.693 <i>T</i> = 17 hours		Use of $t = T$, $V =$ t Differential Equations250 (accept $t = t$)Use of V limits 500 and 250 (either way round)Obtain 17.3 hours, or better
b	E.g. Assumes that temperature remains constant E.g. Assume that the snowball remains a sphere throughout	B1(AO 3.5b) [1]	Any valid assumption made
С	Not very realistic as volume never equals 0, so snowball never melts completely	B1(AO 3.5b) [1]	Consider long term prediction
	Total	9	