1. Fig. 8 shows the curve y = f(x), where $f(x) = (1 - x)e^{2x}$, with its turning point P.

i. Write down the coordinates of the intercepts of y = f(x) with the x- and y-axes.

[2]

ii. Find the exact coordinates of the turning point P.

[6]

[5]

iii. Show that the exact area of the region enclosed by the curve and the *x*- and *y*-axes is $\frac{1}{4}(e^2 - 3)$.

The function g(x) is defined by $g(x) = 3f(\frac{1}{2}x)$.

iv. Express g(x) in terms of x. Sketch the curve y = g(x) on the copy of Fig. 8, indicating the coordinates of its intercepts with the x- and y-axes and of its turning point.

[4]

v. Write down the exact area of the region enclosed by the curve y = g(x) and the x- and y-axes.

2. Fig. 9 shows the curve $y = xe^{-2x}$ together with the straight line y = mx, where *m* is a constant, with 0 < m < 1. The curve and the line meet at O and P. The dashed line is the tangent at P.

Fig. 9

- i. Show that the *x*-coordinate of P is $-\frac{1}{2}\ln m$.
- ii. Find, in terms of *m*, the gradient of the tangent to the curve at P.

[4]

[3]

You are given that OP and this tangent are equally inclined to the *x*-axis.

- iii. Show that $m = e^{-2}$, and find the exact coordinates of P.
- iv. Find the exact area of the shaded region between the line OP and the curve.

[7]

[4]

Find the exact value of
$$\int_{1}^{2} x^{3} \ln x \, dx = \ln x \, dx.$$

4. Find $\int_{1}^{4} x^{-\frac{1}{2}} \ln x \, dx$, giving your answer in an exact form.

[5]

[5]

5. Find $\int x^2 e^{2x} dx$.

6.

[6]

[6]

[9]

7. Using the substitution $x = e^{u}$, find $[(\ln x)^2 dx]$.

Find $\int 4x^2 \sin 2x dx$.

8. Fig. 10 shows the graph of $y = (k - x) \ln x$ where k is a constant (k > 1).

Fig. 10

Find, in terms of *k*, the area of the finite region between the curve and the *x*-axis. [8]

^{9.} In this question you must show detailed reasoning.

Fig. 15 shows the graph of $y = 5xe^{-2x}$. Find the exact value of the area of the shaded region between the curve, the *x*-axis and the line parallel to the *y*-axis through the maximum point on the curve.

^{10.} In this question you must show detailed reasoning.

The curve $y = \ln x$ passes through the point (*a*, *b*), where a > 1.

The area A is bounded by the x-axis, the line x = a and the curve $y = \ln x$.

The area *B* is bounded by the *x*-axis, the *y*-axis, the line y = b and the curve $y = \ln x$.

The area *A* is equal in magnitude to the area *B*.

(a) Show that *a* satisfies the equation $pa \ln a + qa + r = 0$, where *p*, *q* and *r* are constants to be determined.

[7]

The value of *a* is found using the Newton-Raphson method on a spreadsheet. The output is shown in Fig. 15.

r	x _r
0	4
1	5.177399
2	4.931531
3	4.921571
4	4.921554

Fig. 15

Heidi states that the value of *a* is 4.921554 correct to 6 decimal places. **(b)** Determine whether she is correct.

[2]

END OF QUESTION paper

Mark scheme

Que	estion	Answer/Indicative content	Marks	Part marks and guidance
1	i	(1, 0) and (0, 1)	B1B1	x = 0, y = 1; y = 0, x = 1 Examiner's Comments The points of intersection were a write-down for many candidates. Weaker attempts failed to solve $(1 - x) e^{2x} = 0$ convincingly.
	i	$f'(x) = 2(1 - x)e^{2x} - e^{2x}$	B1	$d/dx(e^{2x}) = 2e^{2x}$
	i		M1	product rule consistent with their derivatives
	i	$=e^{2x}(1-2x)$	A1	correct expression, so $(1 - x)e^{2x} - e^{2x}$ is B0M1A0
	i	$f'(x) = 0$ when $x = \frac{1}{2}$	M1dep	setting their derivative to 0 dep 1 st M1
	i		A1cao	$X = \frac{1}{2}$
				allow 1/2 e1 isw
				Examiner's Comments
	i	<i>y</i> = ½ e	B1	This proved to be an accessible 6 marks for candidates. The derivative of e^{2x} and the product rule were generally correct, and deriving $x = \frac{1}{2}$ and $y = e^{1/2}$ was straightforward, though many did not simplify the derivative to $e^{2x} - 2xe^{2x}$ immediately. Some candidates approximated for $e^{1/2}$ and lost a mark.

iii	$A = \int_0^1 (1-x) \mathrm{e}^{2x} \mathrm{d}x$	B1	correct integral and limits; condone no d <i>x</i> (limits may be seen later)	Integration by Parts
iii	$u = (1 - x), u' = -1, v' = e^{2x}, v = \frac{1}{2} e^{2x}$	M1	u , u' , v' , v , all correct; or if split up $u = x$, $u' = 1$, $v' = e^{2x}$, $v = \frac{1}{2}e^{2x}$	
	$\Rightarrow A = \left[\frac{1}{2}(1-x)e^{2x}\right]_{0}^{1} - \int_{0}^{1}\frac{1}{2}e^{2x}.(-1)dx$	A1	condone incorrect limits; or, from above, $\dots \left[\frac{1}{2}xe^{2x}\right]_{0}^{1} - \int_{0}^{1}\frac{1}{2}e^{2x}dx$	
iii	$= \left[\frac{1}{2}(1-x)e^{2x} + \frac{1}{4}e^{2x}\right]_{0}^{1}$	A1	o.e. if integral split up; condone incorrect limits	
			NB AG	
	$= \frac{1}{4} e^{2} - \frac{1}{2} - \frac{1}{4}$ $= \frac{1}{4} (e^{2} - 3) *$		Examiner's Comments	
	$= \frac{1}{4} (e^2 - 3) *$	A1cao	Most candidates applied integration by parts to either $\int (1 - x) e^{2x} dx$ or $\int x e^{2x} dx$, using	
			appropriate u , v' , u' and v . Sign and/or bracket errors sometimes meant they failed to derive	
			the correct result, but many were fully correct.	
iv	$g(x) = 3f(\frac{1}{2} x) = 3(1 - \frac{1}{2} x) e^{x}$	B1	o.e; mark final answer	

2	i	$x e^{-2x} = mx$	M1	may be implied from 2 nd line	Integration by Parts
	i	$\Rightarrow e^{-2x} = m$	M1	dividing by x , or subtracting ln x	o.e. e.g. $[\ln x] - 2x = \ln m + [\ln x]$ or factorising: $x(e^{-2x} - m) = 0$
	i	$\Rightarrow -2x = \ln m$			
	i	$\Rightarrow x = -\frac{1}{2} \ln m^*$	A1	NB AG	
	i	or			
	i	If $x = -\frac{1}{2} \ln m$, $y = -\frac{1}{2} \ln m \times e^{\ln m}$	M1	substituting correctly	
	i	$= -\frac{1}{2} \ln m \times m$	A1		
	i	so P lies on $y = mx$	A1	Examiner's Comments	
				This was well answered, even by weaker candidates.	
	ii	let $u = x$, $u' = 1$, $v = e^{-2x}$, $v' = -2e^{-2x}$	M1*	product rule consistent with their derivs	
	ii		A1	o.e. correct expression	
	ii	$= e^{-2.(-\frac{1}{2}\ln m)} - 2.(-\frac{1}{2}\ln m)e^{-2.(-\frac{1}{2}\ln m)}$	M1dep	subst $x = -\frac{1}{2} \ln m$ into their deriv dep M1*	
				condone e ^{1nm} not simplified	
				Examiner's Comments	
	ii	$= e^{\ln m} + e^{\ln m} \ln m [= m + m \ln m]$	A1cao	The product rule here was generally well done, followed by substituting $x = -\frac{1}{2} \ln m$, where some sign errors occurred. Some left the eln m terms unresolved, which was condoned	but not – 2(– $\frac{1}{2}$ ln <i>m</i>), but mark final ans

			here. The main error was to get a derivative of -2xe-2x.	Integration by Parts
iii	$m + m \ln m = -m$	M1	their gradient from (ii) = $-m$	
iii	$\Rightarrow \ln m = -2$			
iii	$\Rightarrow m = \sigma^{2\star}$	A1	NB AG	
iii	or			
iii	$y + \frac{1}{2}m\ln m = m(1 + \ln m)(x + \frac{1}{2}\ln m) x = -\ln m, y = 0 \Rightarrow \frac{1}{2}m\ln m = m(1 + \ln m)(-\frac{1}{2}\ln m)$ ⇒ 1 + ln m = -1, ln m = -2, m = e ⁻²	B2	for fully correct methods finding xintercept of equation of tangent and equating to – $\ln m$	
iii	At P, <i>x</i> = 1	B1		
	$\Rightarrow y = e^2$	B1	isw approximations Examiner's Comments The first two marks here were the least successfully answered, because most candidates were not familiar with the fact that lines equally inclined to the x-axis have gradients m and –m. Only the best candidates found the result successfully. However, many recovered to find the coordinates of P correctly.	not e ⁻² × 1
iv	Area under curve = $\int_0^1 x e^{-2x} dx$			
iv	$U = x, U' = 1, V' = e^{-2x}, V = -\frac{1}{2} e^{-2x}$	M1	parts, condone $v = k e^{-2x}$, provided it is used consistently in their parts formula	ignore limits until 3 rd A1
iv	$= \left[-\frac{1}{2} x e^{-2x} \right]_{0}^{1} + \int_{0}^{1} \frac{1}{2} e^{-2x} dx$	A1ft	ft their ν	

$$\begin{vmatrix} u \\ u \\ v \\ = \left[-\frac{1}{2} x e^{-2x} - \frac{1}{4} e^{-2x} \right]_{0}^{1} & A_{1} \\ = \left[-\frac{1}{2} x e^{-2x} - \frac{1}{4} e^{-2x} 0.e^{-2x} - \frac{1}{4} e^{-2x} - \frac{1}{4} e^{-2x} 0.e^{-2x} - \frac{1}{4} e^{-2x} 0.e^{-2x} - \frac{1}{4} e^{-2x} - \frac$$

	$= \left[\frac{1}{4}x^{4}\ln x - \frac{1}{16}x^{4}\right]_{1}^{2}$	A1cao	$\frac{1}{4}x^4\ln x - \frac{1}{16}x^4$ o.e.	Integration by Parts
	= 4ln 2 - 15/16	A1cao	o.e. must be exact, but can isw Examiner's Comments There was a pleasing response to this question. Integration by parts was well understood by the majority of candidates, many of whom gained full marks. Very occasionally, uand v' were allocated to the wrong parts, and the other most common error was failing to simplify v u' before integrating this.	must evaluate In 1 = 0 and combine – 1 + 1/16
	Total	5		
4	let $u = \ln x$, $u' = 1/x$, $v' = x^{-1/2}$, $v = k x^{1/2}$	M1	soi (<i>k</i> ≠ 0)	
	$\int x^{-1/2} \ln x [dx] = \left[2x^{1/2} \ln x \right] - \int 2x^{1/2} \cdot \frac{1}{x} [dx]$	A1		
	$= \left[2x^{1/2} \ln x \right] - \int 2x^{-1/2} [dx]$	M1	$x^{1/2} / x = x^{-1/2}$ or $1/x^{1/2}$ seen	
	$= \left[2x^{1/2} \ln x - 4x^{1/2} \right]_{1}^{4}$	A1	$2x^{1/2} \ln x - 4x^{1/2}$	may be integrated separately
	$= 4 \ln 4 - 8 - (2\ln 1 - 4)$			
	= 4 ln 4 – 4	A1cao	oe (eg ln 256 – 4) but must evaluate ln 1 = 0	mark final answer Examiner's Comments Integration by parts was well understood, with just under half candidates scoring full marks for this question. Very occasionally, candidates

			award if no '+ <i>c</i> '	Integration by Parts
	Total	7		
	$-4x^2 \times \frac{\cos 2x}{2} - \int (-8x) \times \frac{\cos 2x}{2} \mathrm{d}x$	M1(AO3.1a)	Integration by parts, allow sign errors only for M1	
		A1(AO1.1b)	all correct	
		M1(AO2.1)		
6	$4x \times \frac{\sin 2x}{2} - \int 2\sin 2x dx$ $-2x^2 \cos 2x + 2x \sin 2x - \int 2\sin 2x dx$	A1(AO1.1b) M1(AO2.1)	Integration by parts, allow sign errors only for M1	
	$-2x^2\cos 2x + 2x\sin 2x - \left(\frac{-2\cos 2x}{2}\right) + c$	A1(AO1.1b)		
	$-2x^2\cos 2x + 2x\sin 2x + \cos 2x + c$	[6]	convincing attempt, allow sign error and/or omission of + <i>c</i> at this	

			stage all correct	Integration by Parts
			AG	
	Total	6		
7	Use $x = e^{u}$ and $\frac{dx}{du} = e^{u}$ $\int (\ln x)^{2} dx = \int (\ln e^{u})^{2} e^{u} du = \int u^{2} e^{u} du$ Use integration by parts $= u^{2} e^{u} - \int 2u e^{u} du$ $= u^{2} e^{u} - \int 2u e^{u} du$ $= u^{2} e^{u} - \int 2u e^{u} du$ $= u^{2} e^{u} - 2u e^{u} + 2e^{u} + c$ $= x(\ln x)^{2} - 2x \ln x + 2x + c$	M1(AO1.1b) A1(AO1.1b) M1(AO3.1a) A1(AO1.1b) M1(AO1.1a) A1(AO1.1b) [6]	Using substitution including dx Simplifying correctly First use of integration by parts First stage all correct Second use of integration by parts Must be in	
			terms of <i>x</i> for final mark	

	Total	6		Integration by Parts
	Curve crosses the x-axis when $y = 0$ $y = (k - x) \ln x = 0$ Either $k - x = 0$ or $\ln x = 0$	M1 (AO 3.1a)	Attempt to solve y = 0	
	EITHER Area = $\int_{1}^{k} (k - x) \ln x dx$ $u = \ln x, \frac{dv}{dx} = k - x, \frac{du}{dx} = \frac{1}{x}, v = kx - \frac{1}{2}x^{2}$	A1 (AO 1.1b) M1 (AO 2.1)	Both roots required	
8	$Let = \begin{bmatrix} x^{2} \\ kx - \frac{1}{2}x^{2} \end{bmatrix} \ln x \end{bmatrix}_{1}^{k} - \int_{1}^{k} \frac{1}{r} \left(kx - \frac{1}{2}x^{2} \right) dx$	A1 (AO 1.1b) M1 (AO 3.1a)	Using integration by parts with	
	$\left[\left(kx - \frac{1}{2}x^2 \right) \ln x \right]_1^k - \int_1^k \left(k - \frac{1}{2}x \right) dx$ $\left[\left(kx - \frac{1}{2}x^2 \right) \ln x - \left(kx - \frac{1}{4}x^2 \right) \right]_1^k$	A1 (AO 1.1b) M1dep (AO 1.1a) A1 (AO 1.1b)	$ \begin{array}{l} \mathcal{U} = \\ \ln x, \\ \frac{dv}{dx} = k - x \\ \text{clearly argued} \\ \begin{array}{l} \text{Allow without} \\ \text{limits} \end{array} $	

$$\begin{bmatrix} \operatorname{Area} = \int_{1}^{k} x \ln x \, dx \\ u = \ln x, \quad \frac{dv}{dx} = x, \quad \frac{du}{dx} = \frac{1}{x}, \quad v = \frac{1}{2}x^{2} \\ = \left[\frac{1}{2}x^{2}\ln x\right]_{1}^{k} - \int_{1}^{k}\frac{1}{x} \times \frac{1}{2}x^{2} dx \\ \left[\frac{1}{2}x^{2}\ln x\right]_{1}^{k} - \int_{1}^{k}\frac{1}{2}x \, dx \\ \left[\frac{1}{2}x^{2}\ln x - \frac{1}{4}x^{2}\right]_{1}^{k} \\ \operatorname{Area} = \left(k^{2}\ln k - \frac{1}{4}k^{2}\right) - \left(\frac{1}{2}\ln 1 - \frac{1}{4}\right) = \frac{1}{2}k^{2}\ln k - \frac{1}{4}k^{2} + \frac{1}{4} \\ \operatorname{Area} = \left(k^{2}\ln k - \frac{3}{4}k^{2} + k - \frac{1}{4} \\ = \frac{1}{2}k^{2}\ln k - \frac{3}{4}k^{2} + k - \frac{1}{4} \\ \end{bmatrix} \begin{bmatrix} \operatorname{Both} \text{ integrals} \\ \operatorname{Both} \text{ integral$$

			incorrect limits could also have been credited a method mark.	Integration by Part
	Total	8		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5x(-2\mathrm{e}^{-2x}) + 5\mathrm{e}^{-2x}$	M1 (AO 3.1a)	For use of product rule	
		A1 (AO 1.1)	For correct (unsimplified) derivative	
	$e^{-2x}(-10x+5) = 0$	M1 (AO 1.1a)	For equating derivative to	
	$x = \frac{1}{2}$	A1 (AO 1.1)	zero and attempting to solve for <i>x</i>	
9		M1 (AO 3.1a)	oe	
	$\operatorname{Area} = \int_0^{\frac{1}{2}} 5x \mathrm{e}^{-2x} \mathrm{d}x$			
		M1 (AO 1.1a) A1 (AO 1.1)	Limits 0 and (their) 1 must be seen at	
	$= \left[5x \left(-\frac{1}{2} e^{-2x} \right) \right]_0^{\frac{1}{2}} - \int_0^{\frac{1}{2}} \left(-\frac{5}{2} e^{-2x} \right) dx$	A1 (AO 1.1)	some stage for this mark to be	
		A1 (AO 1.1)	awarded	
		[9]	For	

	$= a \ln a - a + 1$			Integration by Parts
	Their $a - 1 =$ their $a \ln a - a + 1$			
	<i>a</i> ln <i>a</i> – 2 <i>a</i> + 2 = 0			
b	Evaluation of their f(4.921554 – δ) and their f(4.921554 + δ) eg – 0.000000079882 and 0.000000513742 seen to 2 or more sf plus correct conclusion: sign	M1 (AO 2.1) A1(AO 2.2a)	δ≤0.000 000	
	change, so Heidi is correct	[2]		
	Total	9		