1. Fig. 8 shows the curve $y = f(x)$, where $f(x) = (1 - x)e^{2x}$, with its turning point P.

i. Write down the coordinates of the intercepts of $y = f(x)$ with the x- and y-axes.

ii. Find the exact coordinates of the turning point P.

[6]

[5]

iii. Show that the exact area of the region enclosed by the curve and the x - and y -axes is $\frac{1}{4}$ (e² – 3)

The function g(x) is defined by $g(x) = 3f(\frac{1}{2}x)$.

iv. Express $g(x)$ in terms of x. Sketch the curve $y = g(x)$ on the copy of Fig. 8, indicating the coordinates of its intercepts with the x - and y -axes and of its turning point.

[4]

v. Write down the exact area of the region enclosed by the curve $y = g(x)$ and the x- and ^y-axes.

2. Fig. 9 shows the curve $y = xe^{-2x}$ together with the straight line $y = mx$, where m is a constant, with $0 < m < 1$. The curve and the line meet at O and P. The dashed line is the tangent at P.

Fig. 9

- i. Show that the *x*-coordinate of P is $-\frac{1}{2} \ln m$.
- ii. Find, in terms of m , the gradient of the tangent to the curve at P.

[4]

[3]

You are given that OP and this tangent are equally inclined to the x -axis.

- iii. Show that $m = e^{-2}$, and find the exact coordinates of P.
- iv. Find the exact area of the shaded region between the line OP and the curve.

[7]

[4]

3. Find the exact value of
$$
\int_{1}^{2} x^3 \ln x \, dx
$$
ln x dx.

4. Find $\int_{1}^{4} x^{-\frac{1}{2}}$ In x dx, giving your answer in an exact form.

[5]

[5]

5. Find ∫ x^2

6. Find ∫ 4 x^2 sin 2xdx. [6]

-
- 7. Using the substitution $x = e^u$, find $\int (\ln x)^2 dx$ dx . [6]
- 8. Fig. 10 shows the graph of $y = (k \lambda) \ln x$ where k is a constant $(k > 1)$.

Fig. 10

Find, in terms of k , the area of the finite region between the curve and the x -axis. $[8]$

9. In this question you must show detailed reasoning.

Fig. 15 shows the graph of $y = 5xe^{-2x}$. Find the exact value of the area of the shaded region between the curve, the x-axis and the line parallel to the γ -axis through the maximum point on the curve. **[9]**

10. In this question you must show detailed reasoning.

The curve $y = \ln x$ passes through the point (a, b), where $a > 1$.

The area A is bounded by the x-axis, the line $x = a$ and the curve $y = \ln x$.

The area B is bounded by the x-axis, the y-axis, the line $y = b$ and the curve $y = \ln x$.

The area A is equal in magnitude to the area B .

(a) Show that a satisfies the equation $pa \ln a + qa + r = 0$, where p, q and r are constants to be determined.

[7]

The value of a is found using the Newton-Raphson method on a spreadsheet. The output is shown in Fig. 15. Integration by Parts

...
 PhysicsAndMathsTutor.com

Fig. 15

Heidi states that the value of a is 4.921554 correct to 6 decimal places. (b) Determine whether she is correct. [2]

END OF QUESTION paper

Mark scheme

$$
\begin{vmatrix}\n\frac{1}{2}x^{-2x} - \frac{1}{4}e^{-2x}\Big]_{0}^{1} & \frac{1}{2}xe^{-2x} - \frac{1}{4}e^{-2x}\ 0\cdot e \\
= \left[-\frac{1}{2}x^{-2} - \frac{1}{4}e^{-2x}\ 0\cdot e\right]_{0}^{1} & \frac{1}{2}xe^{-2x} - \frac{1}{4}e^{-2x}\ 0\cdot e\n\end{vmatrix}
$$
\nwhere $4x \ln x + e^x \text{ or } e^x \ln 2x$ and $0 \ln x \ln x$ is an arbitrary constant.
\nWe have $2x \ln x e^x$
\nSo $2x \ln x e^x$
\nSo $2x \ln x e^x$
\nSo $2x \ln x e^x$
\n $\frac{1}{2}x^4 \ln x \Big]_{0}^{1} - \int_{1}^{1} \frac{1}{4}x^4 \ln x \Big]_{1}^{2} - \int_{1}^{1} \frac{1}{4}x^4 \cdot \frac{1}{x} dx$
\nWe $0 \ln x e^x$ (Note: 1)(x $v = \lambda x$)
\n $\frac{1}{2}x^4 \ln x \Big]_{0}^{1} - \int_{1}^{1} \frac{1}{4}x^4 \ln x \Big]_{1}^{1} = \int_{1}^{1} \frac{1}{4}x^4 \cdot \frac{1}{x} dx$
\n $\frac{1}{2}x^4 \ln x \Big]_{1}^{1} - \int_{1}^{1} \frac{1}{4}x^3 dx$
\n $\frac{1}{2}x^4 \ln x \Big]_{1}^{1} = \int_{1}^{1} \frac{1}{4}x^3 dx$
\n $\frac{1}{2}x^4 \ln x \Big]_{1}^{1} = \int_{1}^{1} \frac{1}{4}x^3 dx$
\n $\frac{1}{2}x^4 \ln x \Big]_{1}^{1} = \int_{1}^{1} \frac{1}{4}x^3 dx$
\n $\frac{1}{2}x^4 \ln x \Big]_{1}^{1} = \int_{1}^{1} \frac{1}{4}x^3 dx$
\n $\frac{1}{2}x^4 \ln x \$

$$
\begin{pmatrix}\n\left((k^2 - \frac{1}{2}k^2)\ln k - \left(k^2 - \frac{1}{4}k^2\right)\right)\n& - \left((k - \frac{1}{2})\ln 1 - (k - \frac{1}{4})\right)\n\end{pmatrix}
$$
\n
$$
= \frac{1}{2}k^2 \ln k - \frac{3}{4}k^2 + k - \frac{1}{4}
$$
\n
$$
\begin{pmatrix}\n\text{Simplifying the integral of the integral of the integral is given by the integral of the integral.}\n\end{pmatrix}
$$
\n
$$
\int_1^k k \ln x \, dx
$$
\n
$$
u = \ln x, \quad \frac{dv}{dx} = k, \quad \frac{du}{dx} = \frac{1}{x}, \quad v = kx
$$
\n
$$
\begin{pmatrix}\n\text{Using limits.}\n\\ \text{the integral of the integral is given by the integral of the integral.}\n\end{pmatrix}
$$
\n
$$
u = \ln x, \quad \frac{dv}{dx} = k, \quad \frac{du}{dx} = \frac{1}{x}, \quad v = kx
$$
\n
$$
\begin{pmatrix}\n\text{Using } \ln 15x \\
\text{Simplifying the integral of the integral.}\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n\text{Using } \ln 15x \\
\text{Simplifying the integral of the integral.}\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n\text{Using } \ln 15x \\
\text{Simplifying the integral of the integral.}\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n\text{Using } \ln 15x \\
\text{Simplifying the integral of the integral.}\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n\text{Using } \ln 15x \\
\text{Simplifying the integral of the integral.}\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n\text{Using } \ln 15x \\
\text{Simplifying the integral of the integral.}\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n\text{Using } \ln 15x \\
\text{Simplifying the integral of the integral.}\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n\text{Simplifying the integral of the integral.}\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n\text{Simplifying the integral of the integral.}\n\end{pmatrix}
$$
\n
$$
\
$$

Area =
$$
\int_{1}^{k} x \ln x \, dx
$$

\n $u = \ln x$, $\frac{dv}{dx} = x$, $\frac{du}{dx} = \frac{1}{x}$, $v = \frac{1}{2}x^2$
\n
$$
= \left[\frac{1}{2}x^2 \ln x\right]_{1}^{k} - \int_{1}^{k} \frac{1}{x} \times \frac{1}{2}x^2 dx
$$
\n
$$
\left[\frac{1}{2}x^2 \ln x - \frac{1}{4}x^2\right]_{1}^{k}
$$
\n
$$
\left(\frac{1}{2}k^2 \ln k - \frac{1}{4}k^2\right) - \left(\frac{1}{2}\ln 1 - \frac{1}{4}\right) = \frac{1}{2}k^2 \ln k - \frac{1}{4}k^2 + \frac{1}{4}
$$
\n
$$
= \frac{1}{2}k^2 \ln k - \frac{3}{4}k^2 + k - \frac{1}{4}
$$
\n
$$
= \frac{1}{2}k^2 \ln k - \frac{3}{4}k^2 + k - \frac{1}{4}
$$
\n
$$
= \frac{1}{2}k^2 \ln k - \frac{3}{4}k^2 + k - \frac{1}{4}
$$
\n
$$
= \frac{1}{2}k^2 \ln k - \frac{3}{4}k^2 + k - \frac{1}{4}
$$
\n
$$
= \frac{1}{2}k^2 \ln k - \frac{3}{4}k^2 + k - \frac{1}{4}
$$
\n
$$
= \frac{1}{2}k^2 \ln k - \frac{3}{4}k^2 + k - \frac{1}{4}
$$
\n
$$
= \frac{1}{2}k^2 \ln k - \frac{3}{4}k^2 + k - \frac{1}{4}
$$
\n
$$
= \frac{1}{2}k^2 \ln k - \frac{3}{4}k^2 + k - \frac{1}{4}
$$
\n
$$
= \frac{1}{2}k^2 \ln k - \frac{3}{4}k^2 + k - \frac{1}{4}
$$
\n
$$
= \frac{1}{2}k^2 \ln k - \frac{3}{4}k^2 + k - \frac{1}{4}
$$
\n
$$
= \frac{1}{2}k^2 \ln k - \frac{3}{4}k^2 + k - \frac
$$

