Fig. 9 shows the line y = x and the curve y = f(x), where $f(x) = \frac{1}{2}(e^x - 1)$. The line and the curve intersect at the origin and at the point P(*a*, *a*).

i. Show that $e^a = 1 + 2a$.

[1]

ii. Show that the area of the region enclosed by the curve, the *x*-axis and the line x = a is $\frac{1}{2}a$. Hence find, in terms of *a*, the area enclosed by the curve and the line y = x.

[6]

iii. Show that the inverse function of f(x) is g(x), where $g(x) = \ln(1 + 2x)$. Add a sketch of y = g(x) to the copy of Fig. 9.

[5]

iv. Find the derivatives of f(x) and g(x). Hence verify that
$$g'(a) = \frac{1}{f'(a)}$$
.

Give a geometrical interpretation of this result.

[7]

1.

π $\cos 3x \, dx$ Evaluate , giving your answer in exact form.

З. In this question you must show detailed reasoning.

The shaded region in Fig. 2 is bounded by the curves $y = \sin 3x$ and $y = 3 \sin 3x$.

Find

2.

5. In this question you must show detailed reasoning.

Fig. 6 shows the curves $y = \sin x$ and $y = \cos x$ for $-\pi \le x \le \pi$.

Show that the area of the region enclosed between the curves is given by (a) $\int_{a}^{b} (\cos x - \sin x) dx$, where the values of *a* and *b* are to be determined.

(b) Find the exact value of the area of this region.

[4]

[3]

[3]

[3]

[9]

- (a) Show that $8 \sin^2 x \cos^2 x$ can be written as $1 \cos 4x$.
 - **(b)** Hence find $\int \sin^2 x \cos^2 x \, dx$.

6.

^{7.} In this question you must show detailed reasoning.

Fig. 15 shows the graph of $y = 5xe^{-2x}$. Find the exact value of the area of the shaded region between the curve, the *x*-axis and the line parallel to the *y*-axis through the maximum point on the curve.

^{8.} In this question you must show detailed reasoning.

Fig. 9 shows the line y = x and the curve $y = \frac{4}{3}x^3 + a$ where *a* is a constant. The line is a tangent to the curve, touching the curve in the first quadrant.

(a) (i) Show that, at the point of contact between the line and the curve, 4x² = 1. [2]
(ii) Hence find the value of a. [4]
(b) Find the area of the shaded region between the curve and the line. [7]

END OF QUESTION paper

Mark scheme

Question		Answer/Indicative content	Marks	Part marks and guidan	сө
1	i	At P(a, a) g(a) = a so $\frac{1}{2}(e^{a} - 1) = a$			
				NB AG	
	i	$\Rightarrow e^a = 1 + 2a^*$	B1	Examiner's Comments	
				This mark was usually earned.	
	ii	$A = \int_0^a \frac{1}{2} (e^x - 1) dx$	M1	correct integral and limits	limits can be implied from subsequent work
	ii	$=\frac{1}{2}\left[e^{x}-x\right]_{0}^{a}$	B1	integral of $e^x - 1$ is $e^x - x$	
	ii	$= \frac{1}{2} (e^a - a e^0)$	A1		
	ii	$= \frac{1}{2} (1 + 2a - a - 1) = \frac{1}{2} a^*$	A1	NB AG	
	ii	area of triangle = $\frac{1}{2} a^2$	B1		
				mark final answer	
				Examiner's Comments	
				Virtually everyone scored M1 for writing down the correct integral and limits, but many candidates made a meal of	
	ii	area between curve and line = $\frac{1}{2} a^2 - \frac{1}{2} a$	B1cao	trying to integrate $\frac{1}{2}(e^{x} - 1)$, with $\frac{1}{4}(e^{x} - 1)^{2}$ not an	
				this hurdle, using part (i) to derive ½ a was spotted by about	
				50% of the candidates. Quite a few candidates managed to recover to earn the final 2 marks for $\frac{1}{2}(a^2 - a)$ (without	
				incorrectly simplifying this to1/2 a!).	

	$y = \frac{1}{2}(e^x - 1)$ swap x and y		Integration as Inverse of Differenti	ation and to Find Area Under a Curve (Yr. :
	$x = \frac{1}{2} (e^{y} - 1)$			
iii	$\Rightarrow 2x = e^y - 1$	M1	Attempt to invert — one valid step	merely swapping x and y is not 'one step'
iii	$\Rightarrow 2x + 1 = e^{y}$	A1		
∷	$\Rightarrow \ln(2x+1) = y^*$ $\Rightarrow g(x) = \ln(2x+1)$	A1	$y = \ln(2x + 1)$ or $g(x) = \ln(2x + 1)$ AG	apply a similar scheme if they start with $g(x)$ and invert to get $f(x)$. or g $f(x) = g((e^x - 1)/2)$ M1
iii	Sketch: recognisable attempt to reflect in			
iii	y = x	M1	through O and (<i>a, a</i>)	$= \ln(1 + e^{x} - 1) = \ln(e^{x}) A1 = x A1$
111	Good shape	A1	no obvious inflexion or TP, extends to third quadrant, without gradient becoming too negative Examiner's Comments Finding the inverse function proved to be an easy 3 marks for most candidates – candidates are clearly well practiced in this. The graphs were usually recognisable reflections in y = <i>x</i> , but only well drawn examples – without unnecessary maxima or inflections – were awarded the 'A' mark.	similar scheme for fg See appendix for examples
iv	$f'(x) = \frac{1}{2} e^x$	B1		
iv	g'(x) = 2/(2x + 1)	M1	1/(2x + 1) (or $1/u$ with u = 2x + 1)	
iv		A1	× 2 to get $2/(2x + 1)$	
iv	g '(<i>a</i>) = 2/(2 <i>a</i> + 1) , f '(<i>a</i>) = ½ e ^{<i>a</i>}	B1	either g'(a) or f '(a) correct soi	
iv	so g '(a) = $2/e^a$ or f '(a) = $\frac{1}{2}(2a + 1)$	M1	substituting $e^a = 1 + 2a$	

	iv	$= 1/(\frac{1}{2}e^{a}) = (2a + 1)/2$ [= 1/f '(<i>a</i>)] [= 1/g '(<i>a</i>])	A1	Integration as Inverse of Differentiates establishing f '(a) = 1/g '(a)	ation and to Find Area Under a Curve (Yr. 2) either way round
				must mention tangents Examiner's Comments	
	iv	tangents are reflections in $y = x$	B1	This proved to be more difficult, as intended for the final question in the paper. As with the integral, many candidates struggled to differentiate $\frac{1}{2} (e^x - 1)$ correctly, and equally many omitted the '2' in the numerator of the derivative of $\ln(1 + 2x)$. Once these were established correctly the substitution of $x = a$ and establishing of $f'(a) = 1/g'(a)$ was generally done well, though sometimes the arguments using the result in part (i) were either inconclusive or done 'backwards'. The final mark proved to be elusive for most, as we needed the word 'tangent' used here to provide a	
		Total	19	geometric interpretation of the reciprocal gradients.	
2		$\int_{0}^{\frac{\pi}{12}} \cos 3x dx = \left[\frac{\sin 3x}{3}\right]_{0}^{\frac{\pi}{12}}$ $= \frac{1}{3} \left(\sin \frac{\pi}{4} - 0\right)$ $= \frac{\sqrt{2}}{6} \text{ o.e.}$	B1(AO1.1) M1(AO1.1) A1(AO1.1) [3]	sin 3x 3 Must be in exact form	
		Total	3		
3		DR	M1(AO		

		$\int_0^{\frac{1}{3}\pi} (3\sin 3x - \sin 3x) \mathrm{d}x$	1.1a)	Integration as Inverse of Differentiation and to Find Area Under a Curve (Yr. 2) Integrating the difference of the functions
		$\left[-\frac{2}{3}\cos 3x\right]_{0}^{\frac{1}{3}\pi}$	B1(AO 1.1b)	$\int \sin 3x \mathrm{d}x = -\frac{1}{3} \cos 3x $ oe soi
		$=-\frac{2}{3}(\cos\pi-\cos\theta)$	B1(AO 3.1a)	Limits used or indicated on a
			A1(AO 2.1)	diagram
		$=-\frac{2}{3}(-1-1)=\frac{4}{3}$ AG	[4]	Must be clearly shown
		Total	4	
		e ³ <i>x</i>	M1(AO 1.1)	
4		3	A1(AO 1.1)	soi
		$4e^{3x} + C$	[2]	
		Total	2	
		DR At intersection $\cos x = \sin x$	M1(AO3.1a)	
5	а		M1(AO1.1)	
		tan <i>x</i> = 1	A1(AO1.1)	

		$x = \frac{1}{4}\pi, -\frac{3}{4}\pi$	E1(AO2.4)	Integration as Inverse of Differentiation and to Find Area Under a Curve (Yr. 2 Both values
		Between intersections $\cos x - \sin x > 0$, so area = $= \int_{-\frac{3}{4}\pi}^{\frac{1}{4}\pi} (\cos x - \sin x) dx$	[4]	Explanation and completion
	р	DR $\left[\sin x + \cos x\right]_{-\frac{3}{4}\pi}^{\frac{1}{4}\pi}$ $\sin\left(\frac{1}{4}\pi\right) - \sin\left(-\frac{3}{4}\pi\right) + \cos\left(\frac{1}{4}\pi\right) - \cos\left(-\frac{3}{4}\pi\right) = \frac{4}{\sqrt{2}}$	M1(AO1.1a) M1(AO2.1)	Limits not needed for
		$2\sqrt{2}$	A1(AO1.1) [3] 7	method mark
		FITHER		
		$8\sin^2 x \cos^2 x = 2 (1 - \cos 2x) (1 + \cos 2x)$	M1 (AO 3.1a)	AG Using a double angle formula
6	а	$= 2(1 - \cos^2 2x) = 2 - (1 + 2\cos 4x)$ $= 1 - \cos 4x$	M1 (AO 3.1a)	Second use of a double angle formula
		OR	E1 (AO 2.1) [3]	Clearly shown

$8\sin^2 x \cos^2 x = 2 (2\sin x \cos x)^2$	M1	Integ	pration as Inverse of Different	iation and to Find Area Under a Curve (Yr. 2)
$=2\sin^2 2x$	М1	Using a double angle formula	Allow any other valid sequence of identities	
$[=1 - \cos 2(2x)] = 1 - \cos 4x$	E1 [3]	Another use of a double angle formula		
OR		Clearly shown		
$1 - \cos 4x = 1 - (1 - 2\sin^2 2x)$	M1			
$= 2\sin^2 2x$		Using a double angle formula		
$= 2 (2\sin x \cos x)^2$	M1			
$= 8\sin^2 x \cos^2 x$	E1 [3]	Another use of a double angle formula Clearly shown		
		Examiner's Comments		
		This question posed consider candidates. Some had succes $\cos^2 x$ in terms of $\cos^2 x$ and m not go on to complete the pro- credited for any two application	able difficulty to many ss by writing both sin ² x and nultiplying out. Many then did of. The first 2 marks were ons of the double angle	
		convincing proof so many can 3 marks.	ny when there was a	

	b	$\int \sin^2 x \cos^2 x dx = \frac{1}{8} \int 1 - \cos 4x dx$ $= \frac{1}{8} x - \frac{1}{32} \sin 4x + c$	M1 (AO 1.1a) A1 (AO 1.1b) A1 (AO 1.1b) [3]	Integration as Inverse of Differentiation and to Find Area Under a Curve (Yr. 2 Attempt to integrate both terms $\frac{1}{4} \sin 4x$ seen or implied All correct. Must include + c Examiner's Comments Most candidates realised they needed to use the identity from part (a) although many omitted the factor of $\frac{1}{8}$ Some candidates lost the final mark for omitting the +c.
		Total	6	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 5x(-2\mathrm{e}^{-2x}) + 5\mathrm{e}^{-2x}$	M1 (AO 3.1a) A1 (AO 1.1)	For use of product rule
7		$e^{-2x}(-10x+5) = 0$	M1 (AO 1.1a)	(unsimplified) derivative For equating

$x = \frac{1}{2}$ Area = $\int_0^{\frac{1}{2}} 5x e^{-2x} dx$	A1 (AO 1.1) M1 (AO 3.1a)	derivative to zero and attempting to solve for <i>x</i> oe	ration as Inverse of Different	iation and to Find Area Under a Curve (Y	r. 2)
$= \left[5x \left(-\frac{1}{2} e^{-2x} \right) \right]_0^{\frac{1}{2}} - \int_0^{\frac{1}{2}} \left(-\frac{5}{2} e^{-2x} \right) dx$	M1 (AO 1.1a) A1 (AO 1.1) A1 (AO 1.1)	Limits 0 and (their) $\frac{1}{2}$ must be seen at some stage for this mark to be awarded			
$= -\frac{5}{4}e^{-1} + \left[-\frac{5}{4}e^{-2x}\right]_{0}^{\frac{1}{2}}$	A1 (AO 1.1) [9]	For integration by parts with $u = 5x$ and $v' = e^{-2x}$			
$=-\frac{5}{2}e^{-1}+\frac{5}{4}$		First stage all correct; ignore limits for this mark			
		Integration completed correctly	Not e.g. 0.3303		
		oe, but must be			

				Integration as Inverse of Differentiation and to Find Area Under a Curve (Yr. 2) exact simplified form
		Total	9	
		DR $\frac{dy}{dx} = 4x^{2}$ At point of contact, gradient = 1 so $4x^{2} = 1$ DR	M1 (AO 1.1a) E1(AO 2.4) [2]	AG Convincing
8	a	$x = \frac{1}{2}$ $y = \frac{1}{2}$ $\frac{1}{2} = \frac{4}{3} \left(\frac{1}{2}\right)^3 + a$	B1 (AO 3.2a) B1(AO 2.2a) M1(AO 3.1a) A1(AO 1.1)	Taking the positive root
		$a = \frac{1}{3}$	[4]	
	b	DR When curve crosses line $\frac{4}{3}x^3 + \frac{1}{3} = x$ $4x^3 - 3x + 1 = 0$ $(2x - 1)^2(x + 1) = 0$	M1 (AO 3.1a) M1(AO 1.1) M1(AO 2.2a) A1(AO 1.1)	oe; equation with zero on one side FT <i>their</i> (a), or working in terms of <i>a</i> , for all M marks throughout this part

	$\int_{-1}^{\frac{1}{2}} \left(\frac{4}{3}x^3 + \frac{1}{3} - x\right) dx$	M1(AO 1.1) M1(AO 1.1) A1(AO 1.1)	Integration as Inverse of Differentiation and to Find Area Under a Curve (Yr. Need not include	2)
	$\left[\frac{1}{3}x^4 + \frac{1}{3}x - \frac{1}{2}x^2\right]_{-1}^{\frac{1}{2}}$	[7]	Need not include limits	
	$\frac{9}{16}$			
	Total	13		