1. The growth of a tree is modelled by the differential equation

$$10\frac{\mathrm{d}h}{\mathrm{d}t} = 20 - h$$

where *h* is its height in metres and the time *t* is in years. It is assumed that the tree is grown from seed, so that h = 0 when t = 0.

i. Write down the value of *h* for which $\frac{dh}{dt} = 0$, and interpret this in terms of the growth of the tree.

ii. Verify that $h = 20 (1 - e^{-0.14})$ satisfies this differential equation and its initial condition.

[5]

The alternative differential equation

$$200\frac{\mathrm{d}h}{\mathrm{d}t} = 400 - h^2$$

is proposed to model the growth of the tree. As before, h = 0 when t = 0.

i. Using partial fractions, show by integration that the solution to the alternative differential equation is

$$h = \frac{20(1 - e^{-0.2t})}{1 + e^{-0.2t}}$$

[9]

ii. What does this solution indicate about the long-term height of the tree?

[1]

iii. After a year, the tree has grown to a height of 2 m. Which model fits this information better?

[3]

2. Fig. 8.1 shows an upright cylindrical barrel containing water. The water is leaking out of a hole in the side of the barrel.

Fig. 8.1

The height of the water surface above the hole *t* seconds after opening the hole is *h* metres, where

$$\frac{\mathrm{d}h}{\mathrm{d}t} = -A\sqrt{h}$$

and where A is a positive constant. Initially the water surface is 1 metre above the hole.

i. Verify that the solution to this differential equation is

$$h = \left(1 - \frac{1}{2}At\right)^2$$

[3]

The water stops leaking when h = 0. This occurs after 20 seconds.

ii. Find the value of *A*, and the time when the height of the water surface above the hole is 0.5 m.

Fig. 8.2 shows a similar situation with a different barrel; *h* is in metres.

Fig. 8.2

For this barrel,

$$\frac{\mathrm{d}h}{\mathrm{d}t} = -B\frac{\sqrt{h}}{\left(1+h\right)^2}$$

where *B* is a positive constant. When t = 0, h = 1.

iii. Solve this differential equation, and hence show that

$$h^{\frac{1}{2}}(30+20h+6h^2) = 56-15Bt$$

[7]

[4]

iv. Given that h = 0 when t = 20, find *B*.

Find also the time when the height of the water surface above the hole is 0.5 m.

3. A drug is administered by an intravenous drip. The concentration, *x*, of the drug in the blood is measured as a fraction of its maximum level. The drug concentration after *t* hours is modelled by the differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = k(1+x-2x^2),$$

where $0 \le x < 1$, and k is a positive constant. Initially, x = 0.

i. Express
$$\overline{(1+2x)(1-x)}$$
 in partial fractions.

|--|

[7]

- ii. Hence solve the differential equation to show that $\frac{1+2x}{1-x} = e^{3kt}$.
- iii. After 1 hour the drug concentration reaches 75% of its maximum value and so x = 0.75.

Find the value of k, and the time taken for the drug concentration to reach 90% of its maximum value.

[3]

iv. Rearrange the equation in part (ii) to show that $x = \frac{1 - e^{-3kt}}{1 + 2e^{-3kt}}$.

Verify that in the long term the drug concentration approaches its maximum value.

[5]

Differential Equations

i. Show that
$$\frac{1}{2+x} + \frac{1}{2-x} = \frac{4}{(2+x)(2-x)}$$

[1]

[2]

[2]

[4]

[4]

In a chemical reaction, the time *t* minutes taken for a mass *x* mg of a substance to be produced is modelled by the equation

$$t = \ln\left(\frac{2+x}{2-x}\right)$$

ii. Show that when t = 0, x = 0.

4.

- iii. Show that the rate of change of x is proportional to the product of (2 + x) and (2 x), and find the constant of proportionality.
- iv. Show that $x = \frac{2(1 e^{-t})}{1 + e^{-t}}$.

Hence determine the long-term mass of the substance predicted by this model.

In another chemical reaction, the mass x mg at time t minutes is modelled by the differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = k(2+x)(2-x)\mathrm{e}^{-t}\,,$$

where *k* is a positive constant, and x = 0 when t = 0.

- v. Show by integration that, for this reaction, $\ln\left(\frac{2+x}{2-x}\right) = 4k(1-e^{-t})$
- [5]
- vi. Given that the long-term mass of this substance is 1.85 mg, find the value of k.

[2]

5. In a chemical reaction, the mass *m* grams of a chemical at time *t* minutes is modelled by the differential equation

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \frac{m}{t(1+2t)}$$

At time 1 minute, the mass of the chemical is 1 gram.

(a) Solve the differential equation to show that
$$m = \frac{3t}{(1+2t)}$$
 [8]

(b) Hence

(i) find the time when the mass is 1.25 grams,

(ii) show what happens to the mass of the chemical as *t* becomes large. [2]

6. (a) Solve the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y(1+y)(1-x),$$

given that y = 1 when x = 1. Give your answer in the form y = f(x), where f is a function to be determined. [9]

- (b) By considering the sign of $dx_{near}(1, 1)$, or otherwise, show that this point is a maximum point on the curve y = f(x). [3]
- 7. The number of bacteria in a population at time *t* is denoted by *P*. The rate of increase of *P* is proportional to the square root of *P*.
 - () Write down a differential equation relating P, the time t, and a constant of proportionality k.
 - (ii) Verify that $P = (A + Bt)^2$, where A and B are constants, satisfies the differential equation, and find k in terms of B.

[3]

[1]

[2]

[5]

[7]

[3]

8. In a chemical reaction, compound B is formed from compound A and other compounds. The mass of B at time *t* minutes is *x* kg. The total mass of A and B is always 1 kg. Sadiq formulates a simple model for the reaction in which the rate at which the mass of B increases is proportional to the product of the masses of A and B.

(a) Show that the model can be written as
$$\frac{dx}{dt} = kx(1-x)$$
 where k is a constant.
Initially, the mass of B is 0.2 kg.
(b) Solve the differential equation, expressing x in terms of k and t. [7]
After 15 minutes, the mass of B is measured to be 0.9 kg.
(c) Find the value of k, correct to 3 significant figures. [2]
(d) Find the mass of B after 30 minutes. [1]
(e) Explain what the model predicts for the mass of A remaining for large values of t. [1]

(a)
$$\frac{(x^2 - 8x + 9)}{(x+1)(x-2)^2}$$
 in partial fractions.

$$\frac{dy}{dx} = \frac{y(x^2 - 8x + 9)}{(x+1)(x-2)^2} \text{ and } y = 16 \text{ when } x = 3.$$

9.

(a) (see insert for practice3 H640/03) The differential equation $\frac{dP}{dQ} = \frac{1}{k} \frac{P}{Q}_{is}$ given on line 42. Find the general solution, giving Q as a function of P. [3]

(see insert for practice3 H640/03) Hence show that, when the PED is constant, a(b) 5% increase in price results in the demand changing by a percentage which is independent of the original price, as stated in lines 43–44.

[5]

[2]

^{11.} When a container is filled with water to a depth of y cm, the volume of water, V cm³, in the container is modelled by the formula

$$V = 20y + 3y^2 - 0.1y^3.$$

When the container is filled to its maximum possible depth of 10 cm, the volume of water in the container is 400 cm³.

Water is poured into the container after t seconds at a rate which is modelled by the differential equation

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{k}{\sqrt{t+1}},$$

where k is a positive constant. Initially the container is empty and after 3 seconds it is full.

- (a) Express V in terms of t.
- (b) Calculate the time 7 taken, according to the model, until the container is filled to a depth of 5 cm. [2]
- (c) Calculate the rate at which the depth of water in the container is increasing at this time T. [3]

A student states that, according to the model, the water will overflow.

- (d) Determine whether the student's statement is correct.
- 12.

Solve the differential equation $5x \frac{dy}{dx} = y^2 - y - 6$ given that y = 8 when x = 1. Give your answer in the form y = f(x). [10]

END OF QUESTION paper

Mark scheme

Question		Answer/Indicative content	Marks	Guidance
				AG need interpretation
1	i	h = 20, stops growing	B1	Examiner's Comments
				Most candidates correctly wrote down the value of <i>h</i> but quite a number failed to give the interpretation that the tree stopped growing when its height was 20m.
	ii	$h = 20 - 20e^{-t/10}$ d/h/d $t = 2e^{-t/10}$	M1A1	differentiation (for M1 need ke ^{-#10} , k const)
	ii	$20e^{-t/10} = 20 - 20(1 - e^{-t/10}) = 20 - h$ = 10d/h/dt	M1	
	ii		A1	oe eg $20 - h = 20 - 20(1 - e^{-t/10}) = 20e^{-t/10}$ = $10dh/dt$ (showing sides equivalent)
	ii	when $t = 0$, $h = 20(1 - 1) = 0$	B1	initial conditions
	ii	OR verifying by integration		
	ii	$\int \frac{dh}{20-h} = \int \frac{dt}{10}$	M1	sep correctly and intending to integrate
	ii	$\Rightarrow -\ln(20 - h) = 0.1t + c$	A1	correct result (condone omission of c, although no further marks are possible) condone In (h – 20) as part of the solution at this stage
	ii	$h = 0, t = 0, \Rightarrow c = -\ln 20$ $\Rightarrow \ln(20 - h) = -0.1t + \ln 20 \Rightarrow \ln(\frac{20 - h}{20}) = -0.1t$	B1	constant found from expression of correct form (at any stage) but B0 if say $c = \ln (-20)$ (found using ln ($h - 20$))
	ii	$\Rightarrow 20 - h = 20\sigma^{-0.1t}$	M1	combining logs and anti-logging (correct rules)

			correct form (do not award if B0 above) Differential Equations
			Examiner's Comments
			Those who approached the verification by integration were quite successful. The common errors were:-
ii	$\Rightarrow h = 20(1 - e^{-0.1})$	A1	 omitting the negative sign when integrating 1/(20^wL/h) omitting the constant of integration giving ln(/mL20) in their answers (without modulus signs) despite having usually given <i>h=</i>20 as a maximum value in (i) incorrect anti-logging.
			Those who approached from differentiation usually obtained some marks, particularly the mark for checking the initial conditions but many gave insufficient detail when verifying the given result.
	$\frac{200}{(20+h)(20-h)} = \frac{A}{20+h} + \frac{B}{20-h}$ $\Rightarrow 200 = A(20-h) + B(20+h)$	M1	cover up, substitution or equating coeffs
iii	$h = 20 \Rightarrow 200 = 40 B, B = 5$	A1	
	$h = -20 \Rightarrow 200 = 40A, A = 5$ 200 dh/dt = 400 - h^2	A1	
	$\Rightarrow \int \frac{200}{400 - h^2} dh = \int dt$	M1	separating variables and intending to integrate (condone sign error)
	$\Rightarrow \int \left(\frac{5}{20+h} + \frac{5}{20-h}\right) dh = \int dt$		substituting partial fractions
	$\Rightarrow 5\ln(20 + h) - 5\ln(20 - h) = t + c$	A1	ft their <i>A, B</i> , condone absence of <i>c</i> , Do not allow In (h-20) for A1.
	When $t = 0$, $h = 0 \Rightarrow 0 = 0 + c \Rightarrow c = 0$	B1	cao need to show this. c can be found at any stage. NB $c = \ln (-1)$ (from ln ($h - 20$)) or similar scores B0.

				www Differential Equations
	iv	As $t \to \infty$, $h \to 20$. So long-term height is 20m.	B1	Examiner's Comments
				Usually correct.
	v	1 st model $h = 20(1 - e^{-0.1}) = 1.90$	B1	Or 1 st model $h = 2$ gives $t = 1.05$
	v	2 nd model $h = 20(e^{1/5} - 1)/(e^{1/5} + 1) = 1.99$	B1	2^{nd} model $h = 2$ gives $t = 1.003$
				dep previous B1s correct
	v	so 2 nd model fits data better	B1 dep	Examiner's Comments
				Most candidates scored all three marks.
		Total	19	
2	i	Either $h = (1 - \frac{1}{2} At)^2 \Rightarrow dh/dt = -A(1 - \frac{1}{2} At)$	M1	Including function of a function, need to see middle step
	i	$= -A_{\rm V}h$	A1	AG
	i	when $t = 0$, $h = (1 - 0)^2 = 1$ as required	B1	
	i	$\operatorname{Or} \int \frac{dh}{\sqrt{h}} = \int -A dt$	M1	Separating variables correctly and integrating
	i	$2h^{1/2} = -At + c$	A1	Including <i>c</i> . [Condone change of <i>c</i> .]
	i	$h = \left(\frac{-At + c}{2}\right)^{2}_{\text{at } t = 0, h = 1, 1 = (c/2)^{2} \Rightarrow c}$		
		$= 2, h = (1 - At/2)^2$		
	i		B1	Using initial conditions AG

			Examiner's Comments Differential Equations
			The method of separating the variables and integrating was more popular than verification, and was more successful. Those that verified usually forgot to use the initial conditions. When integrating there was sometimes confused work when the arbitrary constant was changed but continued to be used as <i>c</i> .
ii	When $t = 20$, $h = 0$	M1	Subst and solve for A
ii	$\Rightarrow 1 - 10 A = 0, A = 0.1$	A1	сао
ii	When the depth is 0.5 m, $0.5 = (1 - 0.05 h^2)$	M1	substitute $h = 0.5$ and their A and solve for t
	⇒ 1 – 0.05 $t = \sqrt{0.5}, t = (1 - \sqrt{0.5})/0.05 = 5.86s$	A1	www cao accept 5.9
ii			Examiner's Comments Good marks were scored in this part by all candidates. Some made the question more difficult when finding A by using a quadratic equation. The most common error was in using $\sqrt{0.5}$ as 0.25 when finding <i>t</i> .
iii	$\frac{dh}{dt} = -B \frac{\sqrt{h}}{(1+h)^2}$ $\Rightarrow \int \frac{(1+h)^2}{\sqrt{h}} dh = -\int B dt$	M1	separating variables correctly and intend to integrate both sides (may appear later) [NB reading (1 + h) ² as 1 + h ² eases the question. Do not mark as a MR] In cases where (1 + h) ² is MR as 1 + h ² or incorrectly expanded, as say 1 + h + h ² or 1 + h ² , allow first M1 for correct separation and attempt to integrate and can then score a max of M1M0A0A0A1 (for – Bt + d) A0A0, max 2/7.
iii	Either, LHS		
iii	$\int \frac{1+2h+h^2}{\sqrt{h}} \mathrm{d}h$	M1	expanding $(1 + h)^2$ and dividing by \sqrt{h} to form a one line function of h (indep of first M1) with each term expressed as a single power of h eg must simplify say $1/\sqrt{h} + 2h/\sqrt{h} + h^2\sqrt{h}$, condone a single error for M1 (do not need to see integral signs)
iii	$=\int (h^{-1/2} + 2h^{1/2} + h^{3/2}) dh$	A1	$h\tau^{1/2} + 2h^{1/2} + h^{3/2}$ cao dep on second M only -do not need integral signs

Differential Equations Or, LHS either. iii M1 using $\int u dv + uv + \int v du$ correct formula used correctly, indep of first M1 condone a single error for iii $(1 + 2h + h)^2 h^{1/2} - [2h^{1/2}(2 + 2h)dh]$ M1 if intention clear $h^{1/2} + h^{3/2} + \frac{h^{5/2}}{3} + \int \frac{1}{2} h^{-3/2} (h + h^2 + \frac{h^3}{3}) dh$ iii A1 or. cao oe $2h^{1/2} + \frac{4h^{3/2}}{2} + \frac{2h^{5/2}}{2}$ iii A1 cao oe, both sides dependent on first M1 mark 3 iii = -Bt + cA1 cao need – Bt and c for second A1 but the constant may be on either side iii $\Rightarrow 2h^{1/2} + 4h^{3/2}/3 + 2h^{5/2}/5 = -Bt + c$ from correct work only (accept 3.73 or rounded answers here but not for final A1) or c = -56/15 if iii When t = 0, $h = 1 \Rightarrow c = 56/15$ A1 constant on opposite side. NB AG must be from all correct exact work including exact c. Examiner's Comments iii $\Rightarrow h^{1/2} (30 + 20h + 6h^2) = 56 - 15Bt^*$ A1 A pleasing number of candidates scored full marks here. Most separated the variables correctly and successfully integrated the RHS, including the inclusion of +*c*. Those candidates who realised to expand the bracket and divide often were able to score all the remaining marks. A few used the approach from integration by parts but usually did not reach the end. iv h = 0 when t = 20M1 Substituting h = 0, t = 20iv ⇒ B = 56/300 = 0.187 A1 Accept 0.187 iv When h = 0.556 - 2.8t = 29.3449...M1 Subst their h = 0.5, ft their B and attempt to solve Accept answers that round to 9.5s www. iv \Rightarrow t = 9.52s A1 Examiner's Comments

				Many good scores were achieved here when substituting to find <i>B</i> and <i>t</i> . There were a lot of numerical errors from others.
		Total	18	
3	i	$\frac{1}{(1+2x)(1-x)} = \frac{A}{1+2x} + \frac{B}{1-x} \Longrightarrow 1 = A(1-x) + B(1+2x)$	Enter text here.	Enter text here.
	i	Enter text here.	M1	Cover up, substitution or equating coefficients
	i	$x=1 \Rightarrow 3B=1, B=1/3$	A1	Enter text here.
				isw after correct A and B stated
				Examiner's Comments
	i	$x = -\frac{1}{2} \Rightarrow 1 = \frac{3}{4}, A = \frac{2}{3}$	A1	Was answered extremely well with nearly all candidates correctly expressing ${f l}$
				$\overline{(1+2x)(1-x)}$ in partial fractions.
	ii	$1 + x - 2x^2 = (1 + 2x)(1 - x)$	B1	May be seen in separation of variables (may be implied by later working) – implied by the use of factors $(1 + 2x)$ and $(1 - x)$
	ii	$\Rightarrow \frac{1}{3} \int \left[\frac{2}{(1+2x)} + \frac{1}{1-x}\right] dx = \int k dt$	M1	Separating variables and substituting partial fractions. If no subsequent work integral signs needed, but allow omission of d <i>x</i> or d <i>t</i> , but must be correctly placed if present
	ii	$\lambda \ln(1 + 2x) + \mu \ln(1 - x) = kt (+ c)$	A1	Any non-zero constant λ,μ
	ii	$\Rightarrow \ln(1+2x) - \ln(1-x) = 3kt(+c)$	A1	www oe (condone absence of <i>c</i>)
	ii	When $t = 0$, $x = 0 \Rightarrow c = 0$	B1	cao (must follow previous A1) need to show (at some stage) that $c = 0$. As a minimum $t = 0$, $x = 0$, $c = 0$. Note that $c = \ln(-1)$ (usually from incorrect integration of $(1 - x)$) or similar scores B0
	ii	$\Rightarrow \ln\left(\frac{1+2x}{1-x}\right) = 3kt$	M1	Combining both their log terms correctly. Follow through their c. Allow if $c = 0$ clearly stated (provided that $c = 0$) even if B mark is not awarded, but do not allow if c omitted

			AG www must have obtained all previous marks in this part Differential Equations
			Examiner's Comments
	1+2x 3kt x		In part (ii) the majority of candidates were able to separate the variables and substitute their partial fractions correctly. There were, however, frequent errors in the integration usually when candidates $\frac{1}{1+22\pi}$
ii	$\rightarrow \frac{1-x}{1-x} = c$	A1	forgot to divide by 2 when integrating $1 + 2x$ and/or when they forgot to do the same process with the -1 when integrating $1 - x$. Many candidates did not include a
			constant of integration or, if included, it was either subsequently ignored or set to zero without any mathematical justification. Most candidates were able to combine theirlogarithmic terms correctly, though examiners noted the high volume of cases in which the 'correct' printed answer was seen following earlier incorrect working.
iii	$(1 + 2(0.75)) / (1 - 0.75) = e^{3k}$	M1	substituting $t = 1$, $x = 0.75$ at any stage
iii	k = (1/3)ln10 (= 0.768 (3 s.f.))	A1	3sf or better
			1.45 (or better) or 1 hr 27 mins
			Examiner's Comments
iii	$t = \ln(2.8/0.1)/3k = 1.45$ hours	A1	Most candidates achieved the first two marks in part (iii) for finding the valu of k , but many made errors in handling the logarithms to find the time taken for the drug concentration to reach 90% of its maximum value. Examiners noted the large variation in the accuracy of candidates final answers in this part.
iv	$1 + 2x = e^{3kt} - xe^{3kt}$	Enter text here.	Enter text here.
iv	$\Rightarrow 2x + x e^{3kt} = e^{3kt} - 1$	M1*	Multiplying out and collecting <i>x</i> terms (condone one error)
iv	$\Rightarrow x(2 + e^{3kt}) = e^{3kt} - 1$	M1dep*	Factorising their <i>x</i> terms correctly
iv	$\Rightarrow x = (e^{3kt} - 1) / (2 + e^{3kt})$	A1	Enter text here.

iv	$= (1 - e^{-3\hbar})/(1 + 2e^{-3\hbar})^*$	A1	www (AG) – as AG must be an indication of how previous line leads to the required result (eg stating or showing multiplying by e ^{-3/4})
iv	when $t \to \infty e^{-3kt} \to 0$ $x = (1 - e^{-3k})/(1 + 2e^{-3k}) \to 1/1 = 1$	B1	clear indication that $e^{-3kt} \to 0$ so, for example, accept as a minimum $(x \to) \frac{1-0}{1+0} = 1$ or $e^{-3kt} \to 0 \Longrightarrow (x \to) 1$
			(NB substitution of large values of <i>t</i> with no further explanation is B0)
iv	$\frac{1-x}{1+2x} = e^{-3kt}$	B1	Enter text here.
iv	$1 - x = e^{-3kt} + 2xe^{-3kt}$	M1*	Multiplying up and expanding (condone one error)
iv	$x(1 + e^{-3kt}) = 1 - e^{-3kt}$	M1dep*	Factorising their <i>x</i> terms correctly
			www (AG) – final B mark as in scheme above
			Examiner's Comments
iv	$x = (1 - e^{-3k})/(1 + 2e^{-3k})^*$	A1	In part (iv) most candidates multiplied up by 1– <i>x</i> , collected and factorised the <i>x</i> terms correctly. The main problem seemed to be how to get the negative exponent. These often appeared when candidates divided $e^{3kt} - 1$ by 2 + e^{3kt} , losing the final accuracy mark in the process. It was also $\frac{e^{3kt} - 1}{2 + e^{3kt}}$ common for candidates to simply not show how $2 + e^{3kt}$ was equal to the given answer. Those candidates who started by taking the reciprocal of the answer given in part(ii) part (ii) were usually far more successful in deriving the required result in this part. The majority of
			candidates who attempted to verify that the drug concentration approached its maximum value in the long term recognised that as $t \to \infty$, $e^{-3kt} \to 0$ although some candidates simply substituted a large value of <i>t</i> to show that <i>x</i> was close to 1, this approach was not sufficient to earn the final mark in this part.
	Total	18	

NB AG - must be at least one intermediate step before given answer - correct application of partial fractions is fine

Examiner's Comments

Nearly all candidates correctly showed the required result in part (i) although a few attempted to use partial fractions with varying degrees of success.

In part (ii) many candidates incorrectly verified that when x = 0, t = 0 rather than the required result of showing that when t = 0, x = 0. Those that did begin by setting t = 0 usually went on to score both marks in this part.

4

Part (iv) was answered well with many correctly starting by either writing
$$e^{t'} = \frac{2}{2-x}$$
,
 $e^{-t} = \frac{2-x}{2+x}$,
the latter of these two usually lead to the correct given answer while the former lead to
 $x = \frac{2(e^t - 1)}{1 + e^t}$
with the vast majority of candidates being unable to explain clearly why this would lead to the given
result. As this was a show that question there needed to be a clear indication of how this result
 $x = \frac{2(1 - e^{-t})}{1 + e^{-t}}$.
Finally in this part many candidates correctly stated that the long-term mass of the substance was
2 mg.
Part (v) was answered with varying degrees of success with the vast majority correctly separating
the variables to obtain
 $\int \frac{dx}{(2-x)(2+x)} = k \int e^{-t} dt$
the variables to obtain
- however, from this point it was all too clear that a number of candidates did not, as requested,
show by integration the given result, but simply wrote down the given answer (or an answer only a
single step away from the given result, but simply wrote down the given answer (or an answer only a
single step away from the given result conditions.
Part (v) was answered extremely well with many candidates solitaining the correct answer of 0.811
which was achieved by setting e¹ equal to zero.
1.85 and solve for k with e¹ equal to zero.

Page 19 of 35

	$\frac{1}{4} \left[\ln(2+x) - \ln(2-x) \right] = kt(+c)$	A1	Differential Equations www oe (condone absence of c)
	$x = 0, t = 0 \Rightarrow c = 0$		
iii		A1	www - must include c and show that c = 0. Must explicitly state that $k = \frac{1}{4}$
iv	$e^{t} = \frac{2+x}{2-x}$ (2-x)e^{t}=2+x	B1	
iv	$\Rightarrow 2e^{t} - xe^{t} = 2 + x$ $\Rightarrow x(1 + e^{t}) = 2e^{t} - 2$	M1	Multiplying out, collecting <i>x</i> terms (condone sign slips and numerical errors (eg loss of a 2) only but M0 if e^{t} incorrectly replaced with e^{-t}) and factorising their <i>x</i> terms correctly
iv		A1	www NB AG – as AG must be an indication of how previous line leads to the required result (eg stating or showing multiplying by e^{-t})
iv		B1	
iv	OR (for first three marks) $e^{-t} = \frac{2-x}{2+x}$ (2 + x)e^{-t} = 2 - x	B1	
iv	$\Rightarrow 2e^{-t} + xe^{-t} = 2 - x$ $\Rightarrow x (1 + e^{-t}) = 2 - 2e^{-t}$	M1	Multiplying out, collecting <i>x</i> terms (condone sign slips as above) and factorising their <i>x</i> terms correctly
iv		A1	www NB AG
v		M1*	Separating variables - condone sign slips and issues with placement of <i>k</i> but M0 for $\int (2 - x)(2 + x)dx =$ or equivalent algebraic error in separating variables unless recovered. If no subsequent work integral signs needed, but allow omission of d <i>x</i> and/or d <i>t</i> but must be correctly placed if present
v	$\alpha \ln (2 + x) + \beta \ln (2 - x) = \gamma e^{-t} (+c)$	A1	Any non-zero constants α , β , γ - this line must be seen and cannot be implied by later working (as this is an AG) – condone absence of c or if a constant present condone the use of k for their

				constant. Do not condone invisible brackets e.g. In 2 + x unless recovered before subtraction law of logs applied – all of these points apply to the next A mark too	
	v	$\ln (2 + x) - \ln (2 - x) = -4ke^{-t}(+c)$	A1	www.oe	
	v	When $t = 0$, $x = 0 \Rightarrow c = 4k$	M1dep*	Substituting $x = 0$, $t = 0$ into each term in an attempt to find their c (must get $c =$) - if they integrate and use k as their constant they must use $x = 0$, $t = 0$ to find this single k term only	
	v		A1	www NB AG must have obtained all previous marks in this part	
	v	OR (for first 3 marks) – final M1A1 as above $\int \frac{1}{(2-x)(2+x)} dx = k \int e^{-t} dt$	M1*	Separating variables. If no subsequent work integral signs needed, but allow omission of dx or dt , but must be correctly placed if present	
	v		A2	Must see $1/(4 - x^2)$ on lhs – please note that one A mark cannot be awarded	
	vi	as $t \to \infty$, $x \to 1.85 \Rightarrow \ln 3.85/0.15 = 4k$	M1	Sets e^{-t} to 0 and substitutes $x = 1.85$ – condone substitution of a 'large' value of t only if it leads to the correct value of k	
	vi	$\Rightarrow k = 0.811$	A1	k = 0.25 ln (77 / 3) or 0.81 or better	
		Total	18		
5	а	$\int \frac{\mathrm{d}m}{m} = \int \frac{\mathrm{d}t}{t(1+2t)}$ $\frac{1}{t(1+2t)} \equiv \frac{A}{t} + \frac{B}{1+2t}$ $\Rightarrow 1 \equiv A(1+2t) + Bt$ $t=0 \Rightarrow A = 1$ $t= -\frac{1}{2} B \Rightarrow B = -2$ $\Rightarrow \qquad \int \frac{\mathrm{d}m}{m} = \int \left(\frac{1}{t} - \frac{2}{1+2t}\right) \mathrm{d}t$	M1(AO1.1a) M1(AO3.1b) M1(AO1.1) A1A1(AO1.1 1.1) B1FT(AO2.1) M1(AO1.1) E1(AO2.1)	separating variables using partial fractions substituting values, equating coeffs or cover up A = 1, B = -2 FT their <i>i</i> , <i>ii</i> , condone no <i>c</i> evaluating constant of integration	
		$\Rightarrow \ln m = \ln t - \ln(1+2t) + c$ t= 1, m = 1 \Rightarrow c = \ln 3	[8]		

				Differential Equations
	$\Rightarrow \ln m = \ln \left(\frac{3t}{1+2t} \right)$		AG	
	$\Rightarrow m = \frac{3\pi}{(1+2t)}$			
	i $1.25 = \frac{3t}{(1+2t)}$	M1(AO1.1a)		
	$\Rightarrow 1.25 + 2.5t = 3t$	A1(AO1.1)	Enter text here.	
	\Rightarrow t = 1.25 \div 0.5 = 2.5 minutes	[2]		
	$m = \frac{3}{\left(\frac{1}{-+2}\right)}$	M1(AO3.1b)		
	$\left(t^{+2}\right)$	A1(AO2.2a)	Enter text here.	
	→1.5 [grams]	[2]		
	Total	12		
	$\int \frac{1}{(1-x)} dy = \int (1-x) dx$	M1(AO 1.1a)	Separating the variables	
	$\int y(1+y) = -$	M1(AO 3.1a)	Correct form	
6	$\frac{1}{y(1+y)} = \frac{1}{y} - \frac{1}{1+y}$	A1(AO 1.1b)	$\frac{A}{y} + \frac{B}{1+y}$ used	
		A1(AO 1.1b)	Correct partial fractions	
		M1(AO 1.1a)		

	1 2 .			Differential Equations
	$= x - \frac{1}{2}x^{-} + c$	A1(AO 1.1b)	oe, e.g. RHS $-\frac{1}{2}(1-x)^2 + c$	
	$= 1 - \frac{1}{2} + c$ $c - \frac{1}{2} - \ln 2$		Use of (1, 1) to find <i>c</i>	
	$x = \frac{1}{2} - \ln 2$ $= x - \frac{1}{2}x^2 - \frac{1}{2} - \ln 2$	M1(AO 1.1a)		
	$\ln\left(\frac{2y}{1+y}\right) = x - \frac{1}{2}x^2 - \frac{1}{2}$			
	$\frac{2y}{1+y} = e^{x - \frac{1}{2}x^2 - \frac{1}{2}}$	M1(AO 1.1a)	Writing in non-logarithmic	
	$2y = (1+y)e^{x-\frac{1}{2}x-\frac{1}{2}x^{2}}$	A1(AO 1.1b) [9]	form	
	$y = \frac{c}{2 - e^{x - \frac{1}{2}x^2 - \frac{1}{2}}}$			
			Making y the subject	
			Correct $y = f(x)$	
	$\int_{At, (1, 1)} \frac{dy}{dx} = 1 \times 2(1-1) = 0$	B1(AO 3.1a)		
	Near (1, 1), $y(1 + y)$ is positive and $(1 - x)$ is positive for $x < 1$ but negative for $x > 1$	M1(AO 1.1b)		
b	$\frac{\mathrm{d}y}{\mathrm{d}x} > 0 \text{ for } x < 1 \text{ and } \frac{\mathrm{d}y}{\mathrm{d}x} < 0 \text{ for } x > 1$	E1(AO 2.2a)	Determining sign of gradient on each side	

		maximum point		Clear deduction seen	Differential Equations
		Alternative method $\frac{dy}{dx} = 1 \times 2(1-1) = 0$	B1 M1		
		$\frac{d^2 y}{dx^2} = (1+2y)\frac{dy}{dx}(1-x) + (y+y^2)(-1)$ $\frac{d^2 y}{dx^2} = 3 \times 0 + 2(-1) = -2 < 0$		Differentiation using product rule and evaluation at (1, 1)	
		$\frac{dx^2}{dx^2} = 5 \times 6 + 2(-1) = -2 \times 6$	E1	Condone –2 not seen if clearly negative	
		(1, 1) is a maximum point	[3]	Must follow both 1st and 2nd derivatives	
		Total	12		
7	i	$\frac{\mathrm{d}P}{\mathrm{d}t} = k\sqrt{P}$	B1 [1]	oe - condone $dP = k\sqrt{P}dt$ Examiner's Comments In part(i) most candidates correctly wrote down the constant k. The most common errors in this part $\frac{dt}{dP} = k\sqrt{P} \int_{Dr} \frac{dP}{dt} = kP^2.$	ne differential equation relating P , the time t , and part were those candidates who wrote

out must include
onal to the square root of P
theirdifferential equation given in (i)
condone lack of $+ c$
icient of /maybe implicit stated
tify that $P = (A \perp Rt^2)$ was a solution
ifferential equation by separating
andidates gave the final answer in

		k=2B		$B = \frac{k}{2}$ this part as even though the question specifically asked for <i>k</i> in terms of <i>B</i> .	Differential Equations
		Total	4		
8	а	$\frac{dx}{dt}$ is the rate at which x is increasing Mass of B is x, so mass of A is $(1 - x)$ $\frac{dx}{dt} \propto x(1 - x), \text{ so } \frac{dx}{dt} = kx(1 - x)$	B1(AO2.1)	Must indicate where terms come from	
		dt dt	[1]		
		$\int \frac{1}{x(1-x)} dx = \int k dt$ $\frac{1}{x(1-x)} = \frac{A}{x} + \frac{B}{x}$	M1(AO3.1a) M1(AO3.1a) A1(AO2.2a)	Separation of variables Find partial fractions (may be implied)	
		x(1-x) x $1-x$	M1*(AO1.1a)		
	b	$\int \left(\frac{1}{x} + \frac{1}{1-x}\right) dx = \int k dt \Longrightarrow \ln x - \ln(1-x) = kt + c$	M1dep*(AOs3.1a)	Condone sign error, but must have two In terms and +c	
		$t = 0, \ x = 0.2 \Longrightarrow c = \ln \frac{1}{4}$ (oe)	M1dep*(AO1.1b)	Use of initial conditions; may be done after equation is rearranged Rearrange equation to	
			A1(AOs2.5)	remove logs; may be done before finding <i>c</i>	

		Differential Equations exponentiating both sides of their equation, usually assuming that the operation is distributive.
		Exemplar 4

			MDifferential Equations
			$\frac{dy}{dy} = y\left(\frac{1}{x+1} - \frac{3}{(x+2)} - \frac{1}{(x-2)^2}\right)$
			$\frac{1}{-\frac{1}{2}} \frac{dy}{dx} = \frac{1}{-\frac{3}{2}} \frac{1}{-\frac{1}{2}} \frac{dx}{dx}$
			$\frac{1}{2x+1} = \frac{3}{2x-2} = \frac{1}{(2x-2)}$ All [FT] AD [FT]
			Iny = Infor+11 - 3/n/2-21 - 2 Par
			$\frac{\ln \sqrt{2} \ln x + 1}{(x-2)^3} \xrightarrow{2} \sqrt{2} \xrightarrow{2} $
			$\frac{d^2 + 2(x+2)}{2x}$ if $y^2 + x^{-3}$
			$\frac{16 \text{ UC } x-2}{12 \text{ IZ } -Ae} = \frac{12}{2}$
			$\frac{1}{dx} = \frac{1}{1} = \frac{1}{1} = \frac{1}{x^2}$
			ME/DALL 4- (2+1) 12 10 2+2
			$\int \int \frac{1}{(x-2)^3} + \frac{1}{(t-1)^3}$
			$\frac{y = (x+1)}{(x-2)^3} + \frac{i2e^{2x-2}}{e}$
			In this response FT marks have been credited for the use of their partial fractions and separation of variables. One A mark has been credited FT, but the integration of the quadratic term went astray.
			The exponentiation of both sides was incorrect, but in spite of this, the method mark for substitution was subsequently earned.
	Total	12	

					Differential Equations
		$\int \frac{1}{P} \mathrm{d}P = \frac{1}{k} \int \frac{1}{Q} \mathrm{d}Q$	M1 (AO 1.1a)	Separation of variables	
10	а	$\ln P = \frac{1}{k} \ln Q \ [+c]$	M1 (AO 1.1)	Integration	
		$Q = AP^{\kappa}$ [where A is a constant]	A1 (AO 2.5) [3]	oe; must include constant here	
		$P_1 = 1.05 P_0$	M1 (AO 3.1b)	notation may vary, e.g. just 1.05 <i>P</i>	
		$Q_0 = AP_0^k$ and $Q_1 = A \times 1.05^k P_0^k$	M1 (AO 3.4)	oe	
	b	Percentage change in Q is			
		$100 \left(\frac{A \times 1.05^{k} P_{0}^{k} - A P_{0}^{k}}{A P_{0}^{k}} \right)$	E1 (AO 2.1)		
		= $100(1.05^{k} - 1)$ and so is independent of original price	[3]	Convincing completion	
		Total	6		
11	а	$\int \mathrm{d}V = \int \left(\frac{k}{\sqrt{t+1}}\right) \mathrm{d}t$	M1 (AO3.1a)	Separation of variables. Allow omission of integral signs and or dt or d <i>V</i>	
			M1 (AO1.1)	Allow one error eg omission of + c	

		1		Differential Equation:
		$V = 2k(t+1)^2 + c$	M1 (AO2.1)	0 = 2K + C
			M1 (AO3.3)	400 = 4k + c
		Substitution of both conditions	M1 (AO1.1)	
			, , , , , , , , , , , , , , , , , , ,	For either of these
		k = 200 or c = -400	[5]	
				All correct
		$V = 400\sqrt{t+1} - 400$ oe		
		<i>y</i> = 5, <i>V</i> = 162.5	B1 (AO3.4)	
b	b		B1 (AO1.1)	
		T = 0.9775(390625) BC	[2]	Rounded to 2, 3 or 4 sf,
				awrt 0.9775
		dV dV dv		
		$\frac{dv}{dt} = \frac{dv}{dv} \times \frac{dy}{dt}$ used	M1 (AO3.1a)	
		u uy u		
	•	200 du	M1 (AO2.1)	
	C	$\frac{200}{\sqrt{1+0.0775}} = (20+6\times5-0.3\times5^2)\frac{dy}{dt}$	Δ1 (Δ <u>Ο</u> 1 1)	Allow one slip in derivative
		$\sqrt{1+0.9775}$ u		
			[3]	Rounded to 2, 3 or 4 sf,
		3.346(40522876)		
		Eitheret t 2 $\frac{dV}{dV} = 100 \text{ cm}^3 \text{ s}^{-1}$	B1 (AO3.4)	
d	d	$\frac{dt}{dt} = 0.000 \text{ m/s}$		

				Differential Equations
	$\frac{dy}{dt} = 2 \text{ cms}^{-1}$ Therefore volume/height still increasing	E1 (AO3.5a)		
	so the student is correct	[2]		
	Total	12		
	$\int \frac{5}{y^2 - y - 6} \mathrm{d}y = \int \frac{1}{x} \mathrm{d}x$	M1 (AO 3.1a)	Attempt to separate variables	
	$\frac{5}{y^2 - y - 6} = \frac{A}{y - 3} + \frac{B}{y + 2}$	M1 (AO 3.1a)	Attempt to use partial fractions	With their factors
12	$A = 1, B = -1$ $\int \left(\frac{1}{y-3} - \frac{1}{y+2}\right) dy = \int \frac{1}{x} dx$ $\Rightarrow \ln(y-3) - \ln(y+2) = \ln x + c$	A1 (AO 1.1b) M1 (AO 1.1a) A1 (AO 1.1b) M1 (AO 1.1b) A1 (AO 1.1b)	All correct Integrating, obtaining natural logs FT their partial fractions Use of initial conditions to	
	When $x = 1$, $y = 8$ so $\ln 5 - \ln 10 = \ln 1 + c$ $c = \ln \frac{1}{2}$	M1 (AO 3.1a)	oe	
	$\ln(y-3) - \ln(y+2) = \ln x + \ln \frac{1}{2}$	M1 (AO 1.1a) A1 (AO 1.1b)		
	So $\ln\left(\frac{y-3}{y+2}\right) = \ln\left(\frac{x}{2}\right) \Rightarrow \frac{y-3}{y+2} = \frac{x}{2}$	[10]	Attempt to remove logs from their eqn	

	$2y - = xy + 2xy(2 - x) = 6 + 2x$ $\Rightarrow y = \frac{6 + 2x}{2 - x}$		Attempt to make y the subject oe, but must be $y = f(x)$ form	Differential Equations Of their equation
	Total	10		