Fig. 9 shows a sketch of the curve $y = x^3 - 3x^2 - 22x + 24$ and the line y = 6x + 24. y = 6x + 24(0, 24) (-4, 0) $y = x^3 - 3x^2 - 22x + 24$

Fig. 9

i. Differentiate $y = x^3 - 3x^2 - 22x + 24$ and hence find the *x*-coordinates of the turning points of the curve. Give your answers to 2 decimal places.

[4]

ii. You are given that the line and the curve intersect when x = 0 and when x = -4. Find algebraically the *x*-coordinate of the other point of intersection.

[3]

iii. Use calculus to find the area of the region bounded by the curve and the line y = 6x + 24 for $-4 \le x \le 0$, shown shaded on Fig. 9.

[4]

[3]

1.

Find
$$\int \left(x^2 + \frac{1}{x^2}\right) dx$$

[5]

[3]

[2]

З. Show that the area of the region bounded by the curve $y = 3x^{-\frac{3}{2}}$, the lines x = 1, x = 3and the *x*-axis is $6-2\sqrt{3}$. [5]

4. A curve passes through the point (4, 122) and its gradient is given by

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 - \frac{4}{\sqrt{x}} + 6x^2.$$

Find the equation of the curve.

5. In this question you must show detailed reasoning.

Find the total area of the shaded regions shown in Fig. 8, bounded by the line x = -1, the x-axis and the curve $y = x^3 (x - 3)$. [6]

Fig. 8

A curve passes through the point (2, 10) and has gradient $\frac{dy}{dx} = 12x^3 - 7$. Find the [5] equation of the curve.

v х 0 $^{-1}$

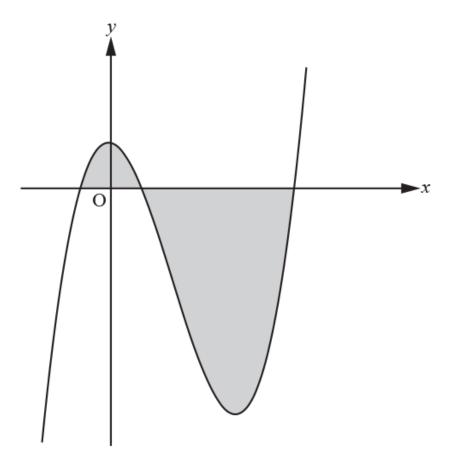
(i) Find $\int_{1}^{5} 4x \, dx$ (ii) Find $\int 6x^{\frac{1}{2}} dx$

6.

Show that
$$\int_0^9 (3+4\sqrt{x}) \, \mathrm{d}x = 99$$

9.

8.

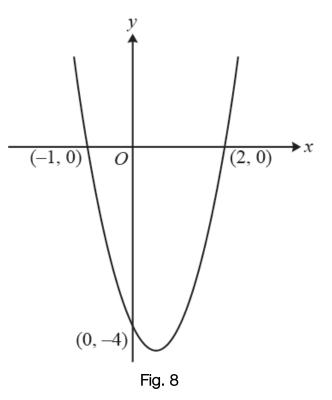

Find
$$\int \left(4\sqrt{x} - \frac{6}{x^3}\right) dx$$
 [4]

^{10.} In this question you must show detailed reasoning.

(a) Show that x - 3 is a factor of $4x^3 - 12x^2 - x + 3$. [1]

Fig. 4 shows the curve $y = 4x^3 - 12x^2 - x + 3$. Find the coordinates of the points (b) where it crosses the

The two regions bounded by the curve $y = 4x^3 - 12x^2 - x + 3$ and the *x*-axis are (c) shaded in Fig. 4.


Determine the total area of the shaded regions.

[5]

[4]

^{11.} In this question you must show detailed reasoning.

Fig. 8 shows the graph of a quadratic function. The graph crosses the axes at the points (-1, 0), (0, -4) and (2, 0).

Find the area of the finite region bounded by the curve and the *x*-axis.

END OF QUESTION paper

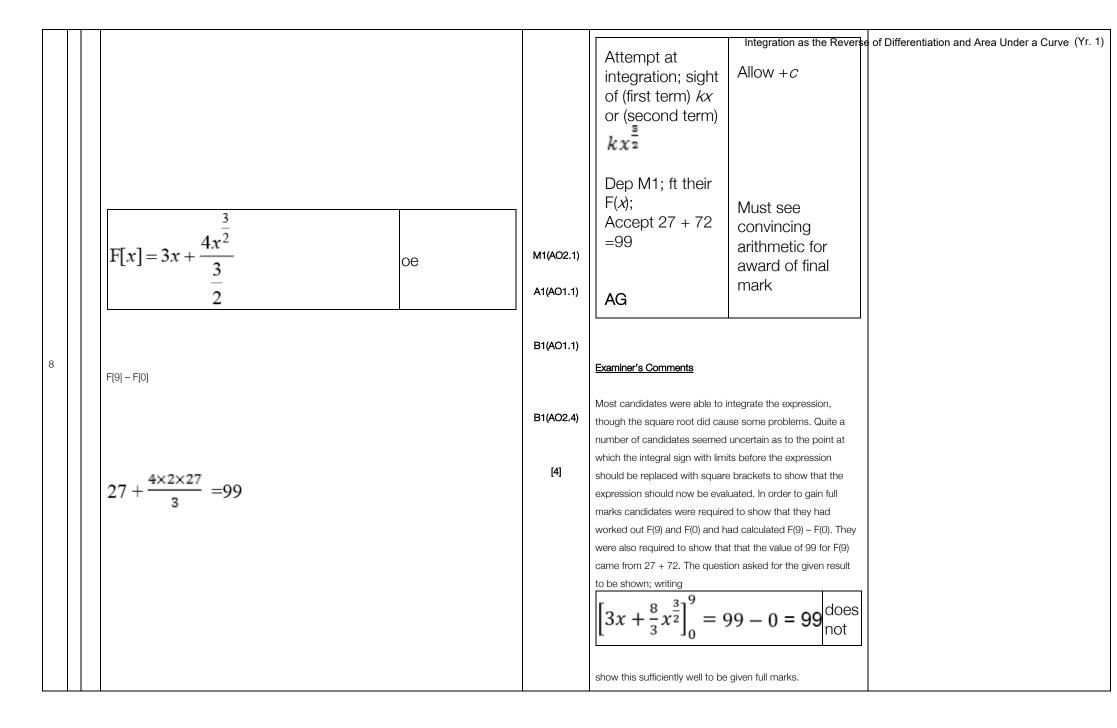
[8]

_

Mark scheme

c	uest	ion	Answer/Indicative content	Marks	Part marks and s	guidance
1		i	$3x^2 - 6x - 22$	M1	condone one incorrect term, but must be three terms	condone "y="
		i	their $y' = 0$ soi	M1	at least one term correct in their y'	may be implied by use of e.g. quadratic formula, completing square, attempt to factorise
		i	3.89	A1		
					if A0A0, SC1 for $\frac{3\pm 5\sqrt{3}}{3}$ or $1\pm \frac{5}{\sqrt{3}}$ or better, or both decimal answers given to a different accuracy or from truncation	
		i	-1.89	A1	Nearly all candidates differentiated successfully and set their derivative to zero. Over 60% of candidates went on to score full marks, although a few candidates made an error (usually $2x^2$ but occasionally + 24 was retained). However, a significant minority attempted unsuccessfully to factorise the quadratic and then gave up and a surprising number were unable to use the quadratic formula correctly. Very few candidates lost an easy mark by leaving their answers in an exact form or by quoting a different precision. Occasionally, candidates found the second derivative and set this equal to zero. A significant minority wasted time either by finding the associated <i>y</i> -values or by determining the nature of the turning points, neither of which were required.	3.886751346 and –1.886751346
		ii	$x^{3} - 3x^{2} - 22x + 24 = 6x + 24$ $x^{3} - 3x^{2} - 28x [= 0]$	M1	may be implied by $x^3 - 3x^2 - 28x = 0$	
		ii	$x^3 - 3x^2 - 28x [= 0]$	M1	may be implied by $x^2 - 3x - 28 = 0$	
			© OCR 2017.		Page 5 of 17	PhysicsAndMathsTutor.com

			dependent on award of both M rks	Differentiation and Area Under a Curve (Yr. 1)
ii	other point when $x = 7$ isw	A1	Examiner's Comments This was very well answered by most candidates. Well over 80% earned the first mark and most went on to score full marks. Occasionally, candidates slipped up when collecting like terms and a few made a sign error when factorising. The minority who failed to score either omitted the question altogether, or set $6x + 24$ equal to the derivative.	ignore other values of <i>x</i>
	$F[x] = \frac{x^4}{4} - \frac{3x^3}{3} - \frac{22x^2}{2} + 24x$	M1*	allow for three terms correct; condone + <i>c</i>	alternative method M1 for $\int ((x^3 - 3x^2 - 22x + 24) - (6x + 24))dx$ may be implied by 2 nd M1
iii	F[0] - F[-4]	M1dep	allow 0 – F[–4], condone – F[–4], but do not allow F[–4] only	M1* for F[x] = $\frac{x^4}{4} - \frac{3x^3}{3} - \frac{28x^2}{2}$ condone one error in integration
iii	area of triangle = 48	B1		M1dep for F[0] – F[-4]
			A0 for – 96, ignore units, Examiner's Comments This question was accessible to most candidates, although a significant minority scored zero. Many candidates found the area of the triangle using ½×base×height. Most of those who	
iii	area required = 96 from fully correct working	A1	used a base of -4 realised that a negative area was impossible and so removed the minus sign. Some used integration and more often than not were successful – sometimes after 'losing' a minus sign. Most candidates also integrated successfully, but some made no further progress, as they ignored the upper limit and then 'airbrushed' the minus sign. A good proportion of those who did integrate successfully then made errors with the arithmetic. Some	no marks for 96 unsupported


			candidates earned two marks l and integrating correctly, but a upper limit or made arithmetica	oy c similar proportion ignored the	e of Differentiation and Area Under a Curve (Yr. 1)
	Total	11			
2	$\frac{\frac{1}{3}x^{3}}{-\frac{1}{x}}$ + c	B1(AO1.1) B1(AO1.1) B1(AO1.1) [3]			
	Total	3			
3	$\int_{1}^{3} 3x^{-\frac{3}{2}} dx$ $\left[-6x^{-\frac{1}{2}}\right]_{1}^{3}$ $\frac{-6}{\sqrt{3}} - \frac{-6}{\sqrt{1}}$ $\frac{-6}{\sqrt{3}} + 6$	M1(AO1.1a) A1(AO1.1) A1(AO1.1) M1(AO1.1) E1(AO2.1)	Attempt to integrate (ignore missing limits) Correct integration Correct limits seen at some point Substitution of limits (condone one error)	Do not award any A- marks if M0 is given Given answer must be seen to	
			Correct intermediate step using surds which follows from the	score E1	

	$6-2\sqrt{3}$ AG	[5]	substitution of limits and is not identical to given answer and completion	Integration as the Reverse	of Differentiation and Area Under a Curve(Yr. 1)
	Total	5			
4	$[y=]x - \frac{4x^{\frac{1}{2}}}{\frac{1}{2}} + \frac{6x^{3}}{3}$ $[y=]x - 8\sqrt{x} + 2x^{3} + c$ Substitution of $y=122$ and $x=4$ in their $y = x - 8\sqrt{x} + 2x^{3} + c$ $y = x - 8\sqrt{x} + 2x^{3} + 6$	M1(AO2.1) A1(AO1.1) A1(AO1.1) M1(AO1.1) A1(AO1.1) [5]	Must be three terms $8\sqrt{x}$ or $8x^{\frac{1}{2}}$ All correct including + <i>c</i>	at least two terms correct	
	Total	5			

				Integration as the Revers	e of Differentiation and Area Under a Curve(Yr. 1)
5	DR Consider $\int_{-1}^{0} x^{3}(x-3) dx$ and $\int_{0}^{3} x^{3}(x-3) dx$ $\int x^{3}(x-3) dx = \int (x^{4} - 3x^{3}) dx$ $\frac{x^{5}}{5} - \frac{3x^{4}}{4}(+c)$ $\left[\frac{x^{5}}{5} - \frac{3x^{4}}{4}\right]_{-1}^{0} = 0 - \left(\frac{(-1)^{5}}{5} - \frac{3(-1)^{4}}{4}\right) = \frac{19}{20}$	M1(AO 3.1a) M1(AO 1.1a) A1(AO 1.1a) A1(AO 1.1b)	Splitting the integral into positive and negative regions with correct limits Attempting to integrate expanded form Correct indefinite integral seen Must be seen to	Integration as the Revers	e of Differentiation and Area Under a Curve (Yr. 1)
	$\begin{bmatrix} 3 & 4 \\ -1 & (-3 & -4 \\ -1 & (-3 & -4 \\ -1 & -20 \end{bmatrix}$ $\begin{bmatrix} \frac{x^5}{5} - \frac{3x^4}{4} \end{bmatrix}_0^3 = \left(\frac{3^5}{5} - \frac{3 \times 3^4}{4}\right) - 0 = -\frac{243}{20}$ $\frac{19}{20} + \frac{243}{20} = \frac{131}{10}$	1.1b) A1(AO 1.1b) B1(AO 1.1b) [6]	Must be seen to use limits Must be seen to use limits www; not		
		[O]	dependent on previous marks		
	Total	6			

					Integration as the Reverse ignore + <i>c</i> for the first two marks	e of Differentiation and Area Under a Curve(Yr. 1)
6	i	2x ² oe F[5] – F[1] 48 cao	B1 M1 (3)		w spoiled this by leaving "+ c "	
	ï	$kx^{\frac{1}{2}+1}_{\text{seen}}$ $4x^{\frac{3}{2}} + c \text{ or } 4\sqrt{x^3} + c \text{ or } 4(\sqrt{x})^3 + c \text{ isw}$	M1 A1 [2]	simply evaluated the integrand.	the method mark by nber omitted the constant of	
		Total	5			

			<i>k</i> >0	Integration as the Revers must not follow from use of $y = mx + c$	e of Differentiation and Area Under a Curve(Yr. 1)
		М1	may be seen later		
	kx4	A1	must follow from integration	must not follow	
	3 <i>x</i> ⁴	B1	must be 3 terms	from use of $y =$	
7	-7x + c	М1	on RHS including term in x^4 , term in x and "c";	must see "y=" or	
	$10 = (\text{their } 3) \times 2^4 - 7 \times 2 + c \text{ oe}$	A1	or $y = 3x^4 - 7x + 1$		
	$y = 3x^4 - 7x - 24$			A1	
		[5]	Examiner's Comments The vast majority of candidates successfully. A few slipped up and a small minority worked wi $m = 12 \times 3 - 7$ and failed to sco	with the arithmetic in finding c , th $y = mx + c$ with	
	Total	5			

		Total	4	Integration as the Reverse of Differentiation and Area Under a Curve (Yr. 1)
9		$kx^{\frac{3}{2}}$ kx^{2} $\frac{8}{3}x^{\frac{3}{2}}_{x^{+}3x^{2}\text{ seen}}$ $\frac{8}{3}x^{\frac{3}{2}} + 3x^{-2} + c \qquad \text{isw}$	M1 (AO 1.1) M1 (AO 1.1) A1 (AO 1.1) A1 (AO 1.1) [4]	Examiner's Comments Generally answered well, but the + c was often missed.
		Total	4	
10	a	DR 108 - 108 - 3 + 3 = 0	B1 (AO 2.4) [1]	Sub. <i>x</i> = 3 and correct completion
	Ь	DR $(x-3)(4x^2-1)$ (x-3)(2x-1)(2x+7) $(3, 0), (\frac{1}{2}, 0), (-\frac{1}{2}, 0)$	M1 (AO 1.1a) M1 (AO 1.1) A1 (AO 1.1) A1 (AO 2.2a)	For at least 2 correct <i>x</i> -values

			[5]	For all three correct points	Integration as the Revers	e of Differentiation and Area Under a Curve (Yr. 1)
	С	DR $\int_{-\frac{1}{2}}^{\frac{1}{2}} (4x^3 - 12x^2 - x + 3) dx - \int_{\frac{1}{2}}^{3} (4x^3 - 12x^2 - x + 3) dx$ $\left[x^4 - 4x^3 - \frac{1}{2}x^2 + 3x \right]_{-\frac{1}{2}}^{\frac{1}{2}} - \left[x^4 - 4x^3 - \frac{1}{2}x^2 + 3x \right]_{\frac{1}{2}}^{3}$ $\left(\frac{15}{16} - \frac{(-17)}{16} \right) - \left(-22\frac{1}{2} - \frac{15}{16} \right)$ $25\frac{7}{16}$	M1 (AO 3.1a) M1 (AO 1.1) A1 (AO 1.1) M1 (AO 1.1) A1 (AO 2.1) [5]	May be awarded at any stage for adding <i>their</i> two absolute areas Integration: at least one term correct All terms correct Use of <i>their</i> two pairs of limits awrt 25.4	Ignore limits (or absence of limits) for these marks	
		Total	10			
11		EITHER Equation of the form $y = k(x + 1)(x - 2)$	M1 (AO1.1a) M1	DR Allow with $k = 1$ and without $y =$ Attempt to find	lgnore = 0 if seen	

			Integration as the Reverts	e of Differentiation and Area Under a Curve(Yr. 1)
	(AO3.1a)	<i>k</i> ≠1	integration as the revers	
(0, -4) on curve so <i>k</i> = 2 OR	A1 (AO1.1b)	All correct		
Equation of the form $y = ax^2 + bx + c$				
(0, -4) on curve $c = 4$	(M1)			
(-1, 0) on the curve $0 = a - b - 4$	(M1)	Uses one point to form an equation	Allow for $c = -4$	
(2, 0) on the curve $0 = 4a - 2b - 4$ Solving simultaneous equations $a = 2, b = -2$ BOTH Area $= \int_{-1}^{2} (2x^2 - 2x - 4) dx$	(A1)	Uses both other points and attempts to solve simultaneous equations All correct	seen	
$\left[\frac{2x^3}{3} - x^2 - 4x\right]_{-1}^2$ $\left(\frac{2 \times 2^3}{3} - 2^2 - 4 \times 2\right) - \left(\frac{2 \times (-1)^3}{3} - (-1)^2 - 4 \times (-1)\right)$	M1 (AO1.1a) A1 (AO1.1b) M1 (AO1.1a)	Integration – allow without limits – condone one error FT their quadratic		

20 7	A1 (AO2.1)		Integration as the Reverse	of Differentiation and Area Under a Curve(Yr. 1)
$= -\frac{20}{3} - \frac{7}{3} = -9$ Area is 9 below the <i>x</i> -axis.	A1 (AO2.1) E1 (AO2.4) [8]	Substitution of limits clearly seen Complete argument leading to exact answer. Allow for 9 if there is an argument to explain the change of sign even if -9 not seen. Must give	"Area must be positive" is not sufficient explanation.	
		modulus and explain the change of sign. FT if their definite integral is negative. Examiner's Comments There were many very good an many lost the final mark as they is given as positive when the definite the definite integral	y did not explain why their area	
		negative value. Only a few can to evaluate their definite integra detailed reasoning question tha working to be clear. Examiners integral and the substitution of	didates used their calculators Il but lost marks as this was a at required all the lines of needed to see the indefinite	
		their answers unnecessarily co		

			Integration as the Reverse of Differentiation and Area Under a Curve (Yr. 1 required area into two or more regions.
			Many candidates struggled to obtain the correct equation of the curve, either using $y = (x + 1)(x + 2)$ or $y = x^2 - 4$ but most of the rest of the marks in this question were obtained following through their equation if it was quadratic.
			Vake sure you do not write $-9 = 9$ without explaining the change of sign. Candidates needed to comment that the area is below the <i>x</i> -axis.
			Do not abandon a long question if there is a problem with the first part. Use any vaguely sensible equation to demonstrate your ability to integrate and use limits – it is
	Total	8	not enough to describe this process in words.