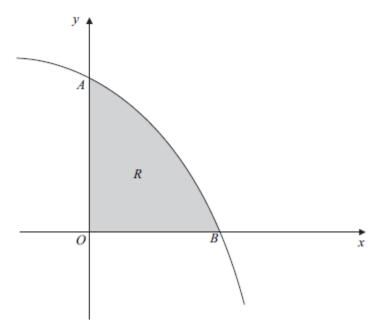
Integration Questions

2 (a) Use the trapezium rule with five ordinates (four strips) to find an approximate value for


$$\int_0^4 \frac{1}{x^2 + 1} \mathrm{d}x$$

giving your answer to four significant figures.

(4 marks)

(b) State how you could obtain a better approximation to the value of the integral using the trapezium rule. (1 mar.

6 The diagram shows a sketch of the curve with equation $y = 27 - 3^x$.

The curve $y = 27 - 3^x$ intersects the y-axis at the point A and the x-axis at the point B.

(a) (i) Find the y-coordinate of point A.

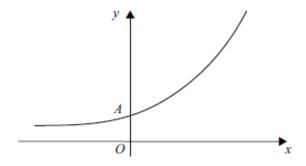
(2 marks)

(ii) Verify that the x-coordinate of point B is 3.

(1 mark)

(b) The region, R, bounded by the curve y = 27 - 3x and the coordinate axes is shaded. Use the trapezium rule with four ordinates (three strips) to find an approximate value for the area of R. (4 marks)

(c) (i) Use logarithms to solve the equation $3^x = 13$, giving your answer to four decimal places. (3 marks)


- (ii) The line y = k intersects the curve $y = 27 3^x$ at the point where $3^x = 13$. Find the value of k.
- (d) (i) Describe the single geometrical transformation by which the curve with equation $y = -3^x$ can be obtained **from** the curve $y = 27 3^x$. (2 marks)
 - (ii) Sketch the curve $y = -3^x$. (2 marks)
- 2 Use the trapezium rule with four ordinates (three strips) to find an approximate value for

$$\int_0^3 \sqrt{2^x} \, dx$$

giving your answer to three decimal places.

(4 marks)

6 The diagram shows a sketch of the curve with equation $y = 3(2^x + 1)$.

The curve $y = 3(2^x + 1)$ intersects the y-axis at the point A.

(a) Find the y-coordinate of the point A.

(2 marks)

- (b) Use the trapezium rule with four ordinates (three strips) to find an approximate value for $\int_0^6 3(2^x + 1) dx$. (4 marks)
- (c) The line y = 21 intersects the curve $y = 3(2^x + 1)$ at the point P.
 - (i) Show that the x-coordinate of P satisfies the equation

$$2^{x} = 6 (1 mark)$$

(ii) Use logarithms to find the x-coordinate of P, giving your answer to three significant figures. (3 marks)

integration Answers

2(a)	h=1	B1		PI
	Integral = $\frac{h}{2}$ {} {} = f(0) + f(4) + 2[f(1) + f(2) + f(3)]	M1		OE summing of areas of the four trapezia. [0.75+0.35+0.15+0.079]
	$= \left[1 + \frac{1}{17} + 2\left(\frac{1}{2} + \frac{1}{5} + \frac{1}{10}\right)\right]$	A1		Exact or to 3dp values Condone one numerical slip
	Integral = 1.329	A1	4	CSO. Must be 1.329
(b)	Increase the number of ordinates	E1	1	OE
	Total		5	

6(a)(i)	y-coordinate of A is $27-3^{\circ}$; = 26	M1A1	2	
(ii)	When $x = 3$, $y = 27 - 3^3 = 0 \implies B(3,0)$	B1	1	AG; be convinced
(b)	h = 1	B1		PI
	Area $\approx h/2\{\}$ $\{\}= f(0)+f(3)+2[f(1)+f(2)]$ $\{\}= "26" + 0 + 2(24 + 18)$	M1 A1√		OE summing of areas of the 'trapezia' on (a)(i) (_trap="25"+21+9)
	(Area ≈) 55	A1√	4	on [42 + 0.5× "(a)(i)"]
(c)(i)	$\log_{10} 3^x = \log_{10} 13$	M1		Takes $\ln \text{ or } \log_{10} \text{ on both}$ or $x = \log_{1} 13$
	$x \log_{10} 3 = \log_{10} 13$	ml		Use of $\log 3^x = x \log 3$ or
				$\log_3 13 = \frac{\lg 13}{\lg 3}$ OE (PI by $\log_3 13 = 2.335$
				or better)
	$x = \frac{\lg 13}{\lg 3} = 2.334717$ = 2.3347 to 4dp	A1	3	Must show that logarithms have been used
(ii)	{k =} 14	B1	1	Condone y = 14; Accept final answer 14 with only zeros after decimal point eg 14.000
(d)(i)	Translation;	B1;		'Translation'/'translate(d)' B0 if more than one transformation
	$\begin{bmatrix} 0 \\ -27 \end{bmatrix}$	B1	2	Accept full equivalent in words provided linked to 'translation/move/shift' and negative y-direction (Note: B0 B1 is possible)
(ii)	y • • • • • • • • • • • • • • • • • • •	B1		Correct shape (translation of given curve vertically downwards)
		B1		Only point of intersection with coord axes is on negative y-axis and curve is asymptotic to the negative x-axis
	1		2	
	Total		15	
	10(a)		10	<u> </u>

2	h = 1	B1		PI
	$f(x) = \sqrt{2^x}$			
	Area ≈ h/2{}			OE summing of areas of the 'trapezia'
	$\{\}= f(0)+f(3)+2[f(1)+f(2)]$	M1		
	$\{\}=1+\sqrt{8}+2(\sqrt{2}+2)$	A1		OE
	(Area ≈) 5.3284 = 5.328 (to 3dp)	A1	4	CAO Must be 5.328
	Total		4	
	$\{\}=1+\sqrt{8}+2(\sqrt{2}+2)$ (Area \approx) 5.3284 = 5.328 (to 3dp)	A1	4	

6(a)	$y_A = 3(2^0 + 1)$	M1		Substituting $x = 0$ PI
	=6		2	, and the second
	= 0	A1	2	
(b)	h = 2	B1		PI
(~)	Integral = $h/2$ {}			
	$\{\} = f(0) + 2[f(2) + f(4)] + f(6)$	M1		OE summing of areas of the three traps.
	$\{\} = 6 + 2[3 \times 5 + 3 \times 17] + 3 \times 65$	A1		Condone 1 numerical slip (ft on (a) for
	= 6 + 2[15 + 51] + 195			f(0) if not recovered}
				[Sum of 3 traps. = 21 + 66 + 246]
	Integral = 333	A1	4	CAO
(c)(i)	$21 = 3(2^x + 1) \Rightarrow 2^x = 6$	B1	1	AG (be convinced)
	()			
(ii)	$\log_{10} 2^x = \log_{10} 6$	M1		Take In or \log_{10} of both sides of $a^x = b$
				or other relevant base if clear. The
				equation $a^x = b$ used must be correct.
	$x \log_{10} 2 = \log_{10} 6$	m1		Use of $\log 2^x = x \log 2$ OE
	$x = \frac{196}{100} = 2.5849 = 2.58 \text{ to } 3\text{sf}$			
	1g2 = 2.3849 = 2.38 to 3s1	A1	3	Both method marks must have been
				awarded.
	Total		10	