Exponential functions

Functions of the form $f(x) = a^x$, where a is a constant, are called exponential functions. You should become familiar with these functions and the shapes of their graphs. For instance, table below shows an example of values for $y = 2^x$.

The graph of $y = 2^x$ is a smooth curve that looks like this:

Exponential functions of the form $f(x) = a^x$ have a special property. The graphs of their gradient functions are a similar shape to the graphs of the function themselves. When the value of a is approximately equal to 2.71878, the gradient function is exactly the same as the original function. The exact value of this is represented by the letter e.

 e^x can be used to model situations such as population growth, where the rate of increase is proportional to the size of the population at any given moment. Similarly, e^{-x} can be used to model radioactive decay, where the rate of decrease is proportional to the number of atoms remaining.

The density of a pesticide in a given section of field, *P* mg/m2 , can be modelled by the equation $P = 160e^{-0.006t}$

a. Use this model to estimate the density of pesticide after 15 days. After 15 days, $t = 15$.

 $P = 160e^{-0.006 \times 15}$

 $P = 146.2$ mg/m²

- b. Interpret the meaning of the value 160 in this model. When $t = 0$, $P = 160e^{\circ} = 160$, so 160 mg/m² is the initial density of pesticide in the field.
- c. Show that $\frac{dP}{dt} = kP$, where k is a constant, and state the value of k. $P = 160e^{-0.006t}$ $= ke^{kx}$

Exponential modelling

 $\frac{dP}{dt}$ = -0.96 $e^{-0.006t}$, so $k = -0.96$ d. Interpret the significance of the sign of your answer to part c.

- As k is negative, the density of the pesticide is decreasing (there is exponential decay)
- e. Sketch the graph of P against t.

The inverses of exponential functions are called logarithms. • $\log_a n = x$ is equivalent to $a^x = n$ $(a \neq 1)$

Exponentials and Logarithms Cheat Sheet

Example 2:

where *t* is the time in days since the pesticide was first applied.

Solving equations using logarithms You can use logarithms and your calculator to solve equations of the form $a^x = b$. You can also solve more complicated equations by 'taking logs' of both sides. • Whenever $f(x) = g(x)$, $\log_a f(x) = \log_a g(x)$

a. $3^x = 20$

```
So x = \log_3 20
```

```
b. 5^{4x-1} = 61So 4x - 1 = \log x4x = 10
```

```
x = \frac{log}{log}
```
Logarithms

Example 3: Write each statement as a logarithm.

a.
$$
3^2 = 9
$$
 b. $2^7 = 128$ c. 64

a.
$$
3^2 = 9
$$
, so $\log_3 9 = 2$
b. $2^7 = 128$, so $\log_2 128 = 7$

c. $64^{\frac{1}{2}} = 8$, so $\log_{64} 8 = \frac{1}{2}$ $\frac{1}{2}$ Logarithms can take fractional or negative values

Laws of logarithms

Expressions involving more than one logarithm can be rearranged or simplified. The laws of logarithms:

- $\log_a x + \log_a y = \log_a xy$ (the multiplication law) • $\log_a x - \log_a y = \log_a \frac{x}{y}$
	- (the division law)

 $\frac{1}{2} = 8$

• $\log_a(x^k) = k \log_a x$ (the power law)

You should also recognise the following special cases:

 \bigcirc \bigcirc

• $\log_a 1 = 0$ $(a > 0, a \ne 1)$

Example 4: Write as a single logarithm.

a. $\log_3 6 + \log_3 7$ $=$ $log_3 (6 \times 7)$

 $= 42$

b. $log_2 15 - log_2 3$ $=$ $log_2(15 \div 3)$ $=$ log₂ 5

c.
$$
2\log_5 3 + 3\log_5 2
$$

\n $2\log_5 3 = \log_5 (3^2)$
\n $3\log_5 2 = \log_5 (2^3)$
\n $\log_5 9 + \log_5 8 = \log$
\nd. $\log_{10} 3 - 4\log_{10} \left(\frac{1}{2}\right)$

$$
4\log_{10}\left(\frac{1}{2}\right) = \log_{10}\left(\frac{1}{2}\right)
$$

$$
\log_{10} 3 - \log_{10}\left(\frac{1}{16}\right) =
$$

Example 5: Solve the following equations, giving your answers to 3 decimal places.

Working with natural logarithms

Logarithms are the inverses of exponential functions. This rule can be used to solve

```
positive values of x.
equations involving powers and logarithms.
```
- $e^{\ln x} = \ln(e^x) = x$ • $\ln x = \log_e x$
-

Example 6: Solve these equations, giving your answers in exact form.

```
a. e^x = 5When e^x = 5ln(e^x) = ln 5x = \ln 5
```

```
b. \ln x = 3When \ln x = 3e^{\ln x} = e^3x = e^3
```

```
Logarithms and non-linear data
```

```
vertical intercept \log a.
```

```
\log a
```

$$
= 2.727
$$
 Use the log button on your calculator
g₅ 61
g₅ 61 + 1

$$
\frac{g_5 61+1}{4} = 0.889
$$

• The graph of $y = \ln x$ is a reflection of the graph $y = e^x$ in the line $y = x$. The graph of $y = \ln x$ passes through (1,0) and does not cross the y-axis. The y-axis is an asymptote of the graph $y = \ln x$. This means that $\ln x$ is only defined for

Logarithms can also be used to manage and explore non-linear trends in data.

If $y = ax^n$ then the graph of log y against log x will be a straight line with gradient n and

Edexcel Pure Year 1

 $=$ $\log_5 9$ $=$ $\log_5 8$ $\frac{1}{25}$ 72

 $\frac{1}{2}$ ⁴ = $\log_{10} \left(\frac{1}{16} \right)$ $\left(\frac{1}{16}\right) = \log_{10}\left(3 \div \frac{1}{16}\right) = \log_{10} 48$

• If $y = e^x$ then $\frac{dy}{dx} = e^x$

A similar result holds for functions such as e^{5x} , e^{-x} and $e^{\frac{1}{2}x}$.

For all real values of x and for any constant k : • **If** $f(x) = e^{kx}$ then $f'(x) = ke^{kx}$

• If $y = e^{kx}$ then $\frac{dy}{dx} = ke^{kx}$

Example 1: Differentiate with respect to x .

$$
t_{\text{so }k=-0.96}
$$
 If $y = e^{kx}$ then $\frac{dy}{dx}$

$v=e^x$

You can write the natural logarithm on both sides

https://bit.ly/pmt-edu

