# **Exponentials and Logarithms Cheat Sheet**

# **Exponential functions**

Functions of the form  $f(x) = a^x$ , where a is a constant, are called exponential functions. You should become familiar with these functions and the shapes of their graphs. For instance, table below shows an example of values for  $y = 2^x$ .

| x | -3            | -2            | -1            | 0 | 1 | 2 | 3 |
|---|---------------|---------------|---------------|---|---|---|---|
| у | $\frac{1}{8}$ | $\frac{1}{4}$ | $\frac{1}{2}$ | 1 | 2 | 4 | 8 |

The graph of  $y = 2^x$  is a smooth curve that looks like this:



# $v = e^x$

Exponential functions of the form  $f(x) = a^x$  have a special property. The graphs of their gradient functions are a similar shape to the graphs of the function themselves. When the value of a is approximately equal to 2.71878, the gradient function is exactly the same as the original function. The exact value of this is represented by the letter e.

| For all real values of x: |                                    |   |  |  |  |  |  |  |
|---------------------------|------------------------------------|---|--|--|--|--|--|--|
| •                         | If $f(x) = e^x$ then $f'(x) = e^x$ | e |  |  |  |  |  |  |

• If  $y = e^x$  then  $\frac{dy}{dx} = e^x$ 

A similar result holds for functions such as  $e^{5x}$ ,  $e^{-x}$  and  $e^{\frac{1}{2}x}$ .

For all real values of x and for any constant k: • If  $f(x) = e^{kx}$  then  $f'(x) = ke^{kx}$ 

• If  $y = e^{kx}$  then  $\frac{dy}{dx} = ke^{kx}$ 

Example 1: Differentiate with respect to *x*.



# **Exponential modelling**

 $e^{x}$  can be used to model situations such as population growth, where the rate of increase is proportional to the size of the population at any given moment. Similarly,  $e^{-x}$  can be used to model radioactive decay, where the rate of decrease is proportional to the number of atoms remaining.



### Example 2:

The density of a pesticide in a given section of field,  $P \text{ mg/m}^2$ , can be modelled by the equation  $P = 160e^{-0.006t}$ 

where t is the time in days since the pesticide was first applied.

a. Use this model to estimate the density of pesticide after 15 days. After 15 days, t = 15.

 $P = 160e^{-0.006 \times 15}$ 

 $P = 146.2 \text{ mg/m}^2$ 

- b. Interpret the meaning of the value 160 in this model. When t = 0,  $P = 160e^{\circ} = 160$ , so 160 mg/m<sup>2</sup> is the initial density of pesticide in the field
- c. Show that  $\frac{dP}{dt} = kP$ , where k is a constant, and state the value of k.  $P = 160e^{-0.006t}$  $= ke^{kx}$

$$P = 160e^{-0.006t}$$

$$If y = e^{kx} \text{ then } \frac{dy}{dx}$$

- d. Interpret the significance of the sign of your answer to part c. As k is negative, the density of the pesticide is decreasing (there is exponential decay)
- e. Sketch the graph of P against t.



### Logarithms

The inverses of exponential functions are called logarithms. •  $\log_a n = x$  is equivalent to  $a^x = n$  $(a \neq 1)$ 

Example 3: Write each statement as a logarithm.

a. 
$$3^2 = 9$$
 b.  $2^7 = 128$ 

a.  $3^2 = 9$ , so  $\log_3 9 = 2$ 

- b.  $2^7 = 128$ , so  $\log_2 128 = 7$
- c.  $64^{\frac{1}{2}} = 8$ , so  $\log_{64} 8 = \frac{1}{2}$ Logarithms can take fractional or negative values

## Laws of logarithms

Expressions involving more than one logarithm can be rearranged or simplified. The laws of logarithms:

- $\log_a x + \log_a y = \log_a xy$ (the multiplication law) •  $\log_a x - \log_a y = \log_a \frac{x}{y}$
- (the division law) •  $\log_a(x^k) = k \log_a x$ 
  - (the power law)

You should also recognise the following special cases:

•  $\log_a \frac{1}{x} = \log_a (x^{-1}) = -\log_a x$ (the power law when k = -1) •  $\log_a a = 1$  $(a > 0, a \neq 1)$ 

 $(a > 0, a \neq 1)$ 

c.  $64^{\frac{1}{2}} = 8$ 

Example 4: Write as a single logarithm.

a.  $\log_3 6 + \log_3 7$  $= \log_3 (6 \times 7)$ 

•  $\log_a 1 = 0$ 

= 42

b. log<sub>2</sub> 15 - log<sub>2</sub> 3  $= \log_2 (15 \div 3)$  $= \log_2 5$ 

c. 
$$2\log_5 3 + 3\log_5 2$$
  
 $2\log_5 3 = \log_5 (3^2) =$   
 $3\log_5 2 = \log_5 (2^3) =$   
 $\log_5 9 + \log_5 8 = \log_5 (2^3) =$   
d.  $\log_{10} 3 - 4\log_{10} \left(\frac{1}{2}\right)$ 

$$4\log_{10}\left(\frac{1}{2}\right) = \log_{10}\left(\frac{1}{\log_{10}} - \log_{10}\left(\frac{1}{16}\right)\right)$$

Solving equations using logarithms You can use logarithms and your calculator to solve equations of the form  $a^{\chi} = b$ . You can also solve more complicated equations by 'taking logs' of both sides. • Whenever f(x) = g(x),  $\log_a f(x) = \log_a g(x)$ 

Example 5: Solve the following equations, giving your answers to 3 decimal places.

```
a. 3^x = 20
    So x = log_3 20
```

```
b. 5^{4x-1} = 61
    So 4x - 1 = log
          4x = lo
```

```
x = \frac{\log_5 61 + 1}{4} = 0.889
```

# Working with natural logarithms

```
positive values of x.
equations involving powers and logarithms.
    • e^{\ln x} = \ln(e^x) = x
```

•  $\ln x = \log_e x$ 

```
a. e^x = 5
    When e^x = 5
    \ln(e^x) = \ln 5
    x = \ln 5
```

```
b. \ln x = 3
     When \ln x = 3
     e^{\ln x} = e^3
    x = e^3
```

Logarithms and non-linear data

```
vertical intercept log a.
```

log a

🕟 www.pmt.education 🛛 🖸 💿 🗗 😏 PMTEducation

# **Edexcel Pure Year 1**

 $= \log_5 9$  $= \log_5 8$ g<sub>5</sub> 72

$$\frac{1}{2}^{4} = \log_{10} \left(\frac{1}{16}\right)$$
$$= \log_{10} \left(3 \div \frac{1}{16}\right) = \log_{10} 48$$

$$= 2.727 \qquad \text{Use the log button on your calculator}$$

$$g_5 61$$

$$g_5 61 + 1$$

$$g_5 61 + 1$$

• The graph of  $y = \ln x$  is a reflection of the graph  $y = e^x$  in the line y = x. The graph of  $y = \ln x$  passes through (1,0) and does not cross the y-axis. The y-axis is an asymptote of the graph  $y = \ln x$ . This means that  $\ln x$  is only defined for

Logarithms are the inverses of exponential functions. This rule can be used to solve

Example 6: Solve these equations, giving your answers in exact form.

You can write the natural logarithm on both sides

Logarithms can also be used to manage and explore non-linear trends in data.

If  $y = ax^n$  then the graph of  $\log y$  against  $\log x$  will be a straight line with gradient n and



