DIFFERENTIATION

1 Differentiate with respect to x

a
$$(x+3)^5$$

b
$$(2x-1)^3$$

c
$$(8-x)^7$$

d
$$2(3x+4)^6$$

e
$$(6-5x)^4$$

$$\mathbf{f} = \frac{1}{x-2}$$

$$\mathbf{g} = \frac{4}{(2x+3)^3}$$

g
$$\frac{4}{(2x+3)^3}$$
 h $\frac{1}{(7-3x)^2}$

2 Differentiate with respect to t

$$\mathbf{a} \quad 2e^{3t}$$

b
$$\sqrt{4t-1}$$

d
$$(8-3t)^{\frac{3}{2}}$$

e
$$3 \ln (6t + 1)$$
 f $\frac{1}{2} e^{5t + 4}$

$$f = \frac{1}{2}e^{5t+4}$$

$$g = \frac{6}{\sqrt[3]{2t-5}}$$

h
$$2 \ln (3 - \frac{1}{4}t)$$

Find $\frac{d^2y}{dx^2}$ for each of the following. 3

a
$$y = (3x - 1)^4$$

b
$$y = 4 \ln (1 + 2x)$$

$$\mathbf{c} \quad y = \sqrt{5 - 2x}$$

4 Find the value of f'(x) at the value of x indicated in each case.

a
$$f(x) = x^2 - 6 \ln 2x$$
, $x = 3$

$$x = 3$$

b
$$f(x) = 3 + 2x - e^{x-2}$$
,

$$x = 2$$

c
$$f(x) = (2 - 5x)^4$$
, $x = \frac{1}{2}$ **d** $f(x) = \frac{4}{x + 5}$,

$$x = \frac{1}{2}$$

d
$$f(x) = \frac{4}{x+5}$$

$$x = -1$$

5 Find the value of x for which f'(x) takes the value indicated in each case.

a
$$f(x) = 4\sqrt{3x+15}$$
,

$$f'(x) = 2$$

$$f'(x) = 2$$
 b $f(x) = x^2 - \ln(x - 2)$, $f'(x) = 5$

$$f'(x) = 5$$

Differentiate with respect to x 6

a
$$(x^2 - 4)^3$$

b
$$2(3x^2+1)^6$$

c
$$\ln (3 + 2x^2)$$

b
$$2(3x^2+1)^6$$
 c $\ln(3+2x^2)$ **d** $(2+x)^3(2-x)^3$

$$\mathbf{e} \quad \left(\frac{x^4+6}{2}\right)^8$$
 $\mathbf{f} \quad \frac{1}{\sqrt{3-x^2}}$ $\mathbf{g} \quad 4+7e^{x^2}$ $\mathbf{h} \quad (1-5x+x^3)^4$

$$\mathbf{f} \quad \frac{1}{\sqrt{3-x^2}}$$

$$\mathbf{g} \ 4 + 7e^{x^2}$$

h
$$(1-5x+x^3)^4$$

i
$$3 \ln (4 - \sqrt{x})$$
 j $(e^{4x} + 2)^7$

j
$$(e^{4x} + 2)^{x}$$

$$\mathbf{k} = \frac{1}{5 + 4\sqrt{x}}$$

$$1 (\frac{2}{x} - x)^5$$

Find the coordinates of any stationary points on each curve.

a
$$y = (2x - 3)^5$$

b
$$y = (x^2 - 4)^3$$

$$\mathbf{c} \quad y = 8x - e^{2x}$$

d
$$y = \sqrt{1 + 2x^2}$$

e
$$y = 2 \ln (x - x^2)$$

e
$$y = 2 \ln (x - x^2)$$
 f $y = 4x + \frac{1}{x - 3}$

8 Find an equation for the tangent to each curve at the point on the curve with the given x-coordinate.

a
$$y = (3x - 7)^4$$
,

$$x = 2$$

b
$$y = 2 + \ln(1 + 4x)$$
,

$$r = 0$$

c
$$y = \frac{9}{x^2 + 2}$$
,

$$x = 1$$

d
$$y = \sqrt{5x-1}$$
,

$$x = \frac{1}{4}$$

Find an equation for the normal to each curve at the point on the curve with the given x-coordinate.

a
$$y = e^{4-x^2} - 10$$
,

$$x = -2$$

$$x = -2$$
 b $y = (1 - 2x^2)^3$,

$$x = \frac{1}{2}$$

$$y = \frac{1}{2 - \ln x}$$
,

$$x = 1$$

d
$$y = 6e^{\frac{x}{3}}$$
,