i. Given that
$$v = e^{-x} \sin 2x$$
 find $\frac{dy}{dx}$

ii. Hence show that the curve $y = e^{-x} \sin 2x$ has a stationary point when $x = \frac{1}{2} \arctan 2$.

[4]

[3]

2. Given that
$$y = \ln\left(\sqrt{\frac{2x-1}{2x+1}}\right)$$
, show that $\frac{dy}{dx} = \frac{1}{2x-1} - \frac{1}{2x+1}$

3. Water flows into a bowl at a constant rate of $10 \text{ cm}^3\text{s}^{-1}$ (see Fig. 4).

Fig. 4

When the depth of water in the bowl is h cm, the volume of water is $V \text{ cm}^3$, where $V = \pi h^2$. Find the rate at which the depth is increasing at the instant in time when the depth is 5 cm.

[5]

4. A spherical balloon of radius $r \,\text{cm}$ has volume $V \,\text{cm}^3$, where $V = \frac{4}{3}\pi r^3$. The balloon is inflated at a constant rate of 10 cm³ s⁻¹. Find the rate of increase of r when r = 8.

5. Find the exact gradient of the curve $y = \ln (1 - \cos 2x)$ at the point with x-coordinat $\frac{1}{6}\pi$. [5]

6. Fig. 4 shows a cone with its axis vertical. The angle between the axis and the slant edge is 45°. Water is poured into the cone at a constant rate of 5cm^3 per second. At time *t* seconds, the height of the water surface above the vertex O of the cone is *h* cm, and the volume of water in the cone is *V* cm³.

Fig. 4

Find 1/in terms of h.

Hence find the rate at which the height of water is increasing when the height is 10 cm.

[You are given that the volume V of a cone of height h and radius r is $V = \frac{1}{3}\pi r^2 h_{\rm c}$.

7. Fig. 1 shows part of the curve $y = e^{2x} \cos x$.

Fig. 1

Find the coordinates of the turning point P.

[5]

8. The volume $V m^3$ of a pile of grain of height *h* metres is modelled by the equation

i. Find
$$\frac{\mathrm{d}V}{\mathrm{d}h}$$
 when $h = 2$.

[4]

At a certain time, the height of the pile is 2 metres, and grain is being added so that the volume is increasing at a rate of 0.4 m^3 per minute.

 $V = 4\sqrt{h^3 + 1} - 4$.

ii. Find the rate at which the height is increasing at this time.

[3]

9. Differentiate the following.

(a)
$$\sqrt{1-3x^2}$$
 [3]

(b)
$$\frac{x^2}{3x+2}$$
 [3]

10. The curve y = f(x) is defined by the function $f(x) = e^{-x} \sin x$ with domain $0 \le x \le 4\pi$.

- (a)
 - (i) Show that the *x*-coordinates of the stationary points of the curve y = f(x), when arranged in increasing order, form an arithmetic sequence.
 - (ii) Show that the corresponding *y*-coordinates form a geometric sequence. [9]
- (b) Would the result still hold with a larger domain? Give reasons for your answer [1]
- 11. Differentiate $(3x^2 + 5)^4$.
- 12.

Differentiate
$$\overline{(5-2x^3)^2}$$
.

1

[3]

[3]

13. dy Find \overline{dx} given that $y = 3x^2 \sin 2x$.

14. In this question you must show detailed reasoning.

(a) Determine the coordinates of the stationary points on the curve.	[5]
(b) Determine the nature of each stationary point.	[3]
(c) Write down the equation of the vertical asymptote.	[1]
(d) Deduce the set of values of x for which the curve is concave upwards.	[1]

15. You are given that

[1]

[3]

2. $y = f^{-1}(x)$ 0 2 4 Fig. 9 (a) Show that the inverse function, $f^{-1}(x)$, passes through the point (14, 2).

The graphs of y = f(x), y = x and $y = f^{-1}(x)$ are shown in Fig. 9.

V

- (b) Find the gradient of $f^{-1}(x)$ at the point (14, 2).
- In this question you must show detailed reasoning. 16.

The equation of a curve is $y = \frac{\ln(x+2)}{\cos x}$

Find the equation of the tangent to the curve at the point where x = 0. [5]

17. In this question you must show detailed reasoning.

- (a) Find the exact coordinates of the stationary point of the curve $y = x \ln x$. [5]
- (b) Show that the stationary point is a minimum turning point. [2]

PhysicsAndMathsTutor.com

[2]

[3]

$$h(x) = \sin\left(\frac{1}{x}\right)_{\text{is defined for the domain}} x > \frac{2}{\pi}.$$

The function

(a) Differentiate
$$h(x)$$
 with respect to x .

(b)
$$\frac{1}{x}$$
 is for $x > \frac{2}{\pi}$. [2]

(c) Show that h(x) is a decreasing function.

END OF QUESTION paper

18.

Mark scheme

Que	stion	Answer/Indicative content	Marks	Part marks and guidance	
1	i	$y = e^{-x} \sin 2x$	M1	Product rule	$u \times \text{their } v' + v \times \text{their } u'$
	i	$\Rightarrow dy/dx = e^{-x} \cdot 2\cos 2x + (e^{-x})\sin 2x$	B1	$d/dx(\sin 2x) = 2\cos 2x$	
				Any correct expression	
				Examiner's Comments	
	i		A1	This proved to be a straightforward start to the paper, with the large majority of candidates getting full marks. Of those who did not, the most common errors were in the derivative of sin 2x (getting $\cos 2x$ or $\frac{1}{2} \cos 2x$) or e-x (omitting the negative sign).	but mark final answer
	ii	dy/dx = 0 when 2 cos 2x - sin 2x = 0	M1	ft their dy/dx but must eliminate e-x	derivative must have 2 terms
	ii	' 2 = tan 2 x	M1	$\sin 2x / \cos 2x = \tan 2x \text{ used}$	substituting ½ arctan 2 into their deriv M0
	ii	' $2x = \arctan 2$		[or tan-1]	(unless cos $2x = 1/\sqrt{5}$ and sin $2x = 2/\sqrt{5}$ found)
				NB AG	
				Examiner's Comments	
	I	$\Rightarrow x = \frac{1}{2} \arctan 2^*$	A1	This part was somewhat less successful. Quite a few candidates just substituted the given answer into the derivative and claimed that this was zero.	must show previous step
		Total	6		

2

Product, Quotient and Chain Rules

© OCR 2017.

	$\frac{1}{2x-1} - \frac{1}{2x+1} = \frac{(2x+1) - (2x-1)}{(2x-1)(2x+1)} = \frac{2}{(2x-1)(2x+1)}$	A1	simplified and correctly shown to be equivalent to $\frac{1}{2x-1} - \frac{1}{2x+1}$ Examiner's Comments Some candidates spotted the trick of simplifying the given function to get $y = \frac{1}{2} \ln(2x-1) - \frac{1}{2} \ln(2x+1)$ before differentiating, and thereby made lives considerably easier for themselves! However, writing the answer down from here omitted the vital $2 \times \frac{1}{2}$ working and lost two marks. Those who started differentiating from $y = \ln(\sqrt{2x-1}) - \ln(\sqrt{2x+1})$ needed to convince that they were using a chain rule on \sqrt{u} , where $u = 2x - 1$. Some tenacious candidates even managed to differentiate the given function correctly without these preliminaries, but made life hard for themselves.	Product, Quotient and Chain Rules
	Total	4		
3	$V = \pi h^2 \Rightarrow d V/dh = 2\pi h \Rightarrow$	M1A1	if derivative $2\pi h$ seen without $d V/dh = \dots$ allow M1A0	
	$dV/dt = dV/dh \times dh/dt$	M1	soi; o.e. – any correct statement of the chain rule using V , h and t – condone use of a letter other than t for time here	
	d <i>W</i> d <i>t</i> = 10	B1	soi; if a letter other than <i>t</i> used (and not defined) B0	
			or 0.32 or better, mark final answer	
			Examiner's Comments	
	$dh/dt = 10/(2\pi \times 5) = 1/\pi$	A1	This proved to be an accessible 5 marks, with many candidates getting the question fully correct. Of those who did not, $d/dd = 10$ (instead of dV/dd) was quite a common misconception; some tried to find dh/dV but failed to handle the constant of $1/\sqrt{\pi}$ correctly; and a surprising number finished off by saying that $10/10\pi = \pi$ instead of $1/\pi$.	

	Total	5		Product, Quotient and Chain Rules
4	$d V dr = 4\pi r^2$	B1	or $12\pi r^2/3$, condone dr/dV, dV/dR	
	d V/dt = 10	B1		Condone use of other letters for t
	d V/dt = (d V/dt)(dt/dt)	M1	a correct chain rule soi	o.e. e.g. d#d <i>t</i> = (d#d <i>V</i> (d <i>V</i> /d <i>t</i>)
	$\Rightarrow 10 = 4 \pi .64. dt/dt$	A1	o.e. (soi) must be correct	
			0.012 or better or 10/256 π or 5/128 π	
			Examiner's Comments	
	$\Rightarrow dr/dt = 0.0124 \text{ cm s}^{-1}$	A1	This question proved to be accessible to the overwhelming majority of candidates, and there were many fully correct solutions. Even those who failed to get full marks usually picked up an M1 for a correctly stated chain rule, B1 for $dV/dr = 4\pi r^2$, and a B1 for $dV/dt = 10$. Approximate answers are perhaps preferable in a contextual question, but exact answers were also allowed.	mark final answer
	Total	5		
5	$y = \ln (1 - \cos 2x)$, let $u = 1 - \cos 2x$			
	$\Rightarrow dy/dx = dy/du. \ du/dx$	M1	1/(1 – cos2 <i>x</i>)soi	
	$= (1/u). 2\sin 2x$	M1	$d/dx(1 - \cos 2x) = \pm 2\sin 2x$	
	$=\frac{2\sin 2x}{1-\cos 2x}$	A1cao		
	When $x = \pi/6$, $\frac{dy}{dx} = \frac{2\sin(\pi/3)}{1 - \cos(\pi/3)}$	M1	substituting $\pi/6$ or 30° into their derive	must be in at least two places

				Product, Quotient and Chain Rules
	= 2 \sqrt{3}	A1cao	Examiner's Comments Plenty of candidates scored 5 marks here with little difficulty. Some missed out the derivative of 1–cos2x, and some wrote 1/2sin2x instead of 1/(1-cos2x). The substitution of $\sqrt{6}$ into the correct derivative was usually done correctly. Some approximation of $2\sqrt{3}$ was found, but could usually be condoned by ignoring subsequent working.	isw after correct answer seen
	Total	5		
6	$h = r \operatorname{so} V = \pi h^3/3$	B1	o.e. e.g π <i>h</i> ³ tan 45°/3	
	$d \mathcal{V} dt = 5$	B1	soi (can be implied from $V = 5\hbar$	e.g. from a correct chain rule
	$d \mathcal{V} dh = \pi h^2$	B1ft	must be d V/dh soi, ft their $\pi h^3/3$	but must have substituted for <i>r</i>
	d V/dt = (d V/dt) . dt/dt	M1	any correct chain rule in V , h and t (soi)	e.g. $dh/dt = dh/dV \times dV/dt$,
	$\Rightarrow 5 = 100 \pi dh/dt$			0.01591549 penalise incorrect rounding
	$\Rightarrow d n/dt = 5/100 \ \pi = 0.016 \ \text{cm s}^{-1}$	AI	U.U 16 or better; accept 1/(20 π) o.e., but mark final answer	penalise incorrect rounding
	<i>or</i> $V = 5t \operatorname{so} \pi t^3/3 = 5t$	B1		
	$\Rightarrow \pi / t^2 dh / dt = 5$	M1	or 5 d#/d $h = \pi h^2$ o.e.	
			0.016 or better; accept 1/(20 $\pi)$ o.e., but mark final answer	
			Examiner's Comments	
	⇒ $dh/dt = 5/\pi h^2 = 5/100 \pi = 0.016 \text{ cm s}^{-1}$	A1	This question was less well done. Nearly all candidates gained marks for quoting a correct chain rule and using dV/dt = 5. By far the most common error thereafter was to fail to find V as a function of h and instead differentiating V = $\pi r^2 h/3$ to give dV/dh = $\pi r^2 /3$. Even when candidates	Penalise incorrect rounding

				recognised the need to substitute for r, there were a surprising number of trigonometric errors, such as $h = r \sin 45^{\circ}$. A number of solutions which found dh/dt = 1/20 π ; then went on to write or evaluate this as $\pi/20$.	Product, Quotient and Chain Rules
		Total	5		
7		$y = e^{2x} \cos x$	M1	product rule used	consistent with their derivs
		$\Rightarrow dy/dx = 2e^{2x}\cos x - e^{2x}\sin x$	A1	cao – mark final ans	e.g. $2e^{2x} - e^{2x} \tan x$ is A0
		$dy/dx = 0 \Rightarrow e^{2x}(2\cos x - \sin x) = 0$	M1	their derivative = 0	
		$\Rightarrow 2\cos x = \sin x$			
		$\Rightarrow 2 = \sin x / \cos x = \tan x$	M1	$\sin x/\cos x = \tan x$ used	or $\sin^2 x + \cos^2 x = 1$ used
		$\Rightarrow x = 1.11$	A1	1.1 or 0.35 π or better, or arctan 2, not 63.4° but condone ans given in both degrees and radians here	1.1071487, 0.352416 π , penalise incorrect rounding
		⇒ <i>y</i> = 4.09	A1cao	art 4.1 Examiner's Comments The product rule was done well, and most candidates were successful in arriving at tanx = 2 at the turning point. The most common error was to give x in degrees and then touse this to calculate y, giving a rather alarmingly large result!	no choice
		Total	6		
8	i	$d V/dh = 4.\frac{1}{2} (h^2 + 1)^{-1/2} .3h^2$	M1	chain rule	their deriv of $4u^{1/2}$ × their deriv of h^3 + 1
	i		A1	correct	
	i		M1	substituting $h = 2$ into their derivative	
	i	when $h = 2$, $d V/dh = 8$	A1cao		

					Examiner's Comments
					This question was extremely well answered, with the majority of candidates scoring full marks.
					The chain rule on <i>V</i> was successfully negotiated by over half the candidates, and then correctly evaluated at $x = 2$.
	ii	d V/dt = 0.4	B1	soi	condone <i>r</i> for <i>t</i>
	ii	$dV/dt = dV/dh \times dh/dt$	M1	o.e.	any correct chain rule in V , h , t (or h)
	11	$0.4 = 8 \times d\hbar/dt \Rightarrow d\hbar/dt = 0.05$ (m per min)	A1cao	0.05 or 1/20	Examiner's Comments This question was extremely well answered, with the majority of candidates scoring full marks. Virtually everyone who scored 4 for part (i) went on to apply the chain rule $d V/dt = d V/dh$ × dh/dt , or some variation of it, to get full marks here. The rest usually earned the first two of the three marks.
		Total	7		
9	а	$\frac{dy}{dx} = \frac{1}{2} \left(1 - 3x^2 \right)^{-\frac{1}{2}} . (-6x)$	B1(AO1.1) M1(AO1.1) A1(AO1.1)	$\frac{1}{2}u^{-\frac{1}{2}}$ soi Chain rule	

		This is a GP with $r = -e^{-\pi}$	E1FT(AO2.1) [9]	substituting one value of x into $f(x)$ FT their of y must state common ratio, wwwFT their of y	ir values	Product, Quotient and Chain Rules
		Vee with evelopetion that values of ywould continue to be concreted by pi and so values of	E1(AO2.2a)			
	b	y would continue to have same common ratio.	[1]			
		Total	10			
1		$\frac{\mathrm{d}y}{\mathrm{d}x} = 4(3x^2 + 5)^3 \times 6x$	M1(AO1.1a) A1(AO 1.1b)	Use of chain rule attempted		
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 24x(3x^2 + 5)^3$	A1(AO 1.16) [3]	6 <i>x</i> soi		
		Total	3			
1 2		$\frac{1}{(5-2x^3)^2} = (5-2x^3)^{-2}$ $\frac{d}{dx}(5-2x^3)^{-2} = (-6x^2)(-2)(5-2x^3)^{-3}$	M1	Chain rule or quotie	ent (or	

		A1	Product, Quotient and Chain Rules
	$= 12x^{2} (5 - 2x^{2})^{-3} isw$	A1 A1cao [3]	On $(5-2x^3)^{-2}$ correct expression, allow $(-6x^2)(-2)U^3$ o.e.
			to get the wrong sign, e.g. $-12x^2(5 - 2x^2)^{-3}$.
	Total	3	
1 3	Product rule with $u = 3x^2$ and $v = \sin 2x$ $\frac{dy}{dx} = 6x \sin 2x + 6x^2 \cos 2x$	M1(AO1.1a) A1(AO1.1b) A1(AO1.1b) [3]	Need not be written explicitly For either of the two terms correct For completely correct answer
	Total	3	

				Product, Quotient and Chain Rules
			Examiner's Comments	
			Again most candidates were successful in classifying the	
			stationary points with use of the second derivative being the	
			most common method. A few considered the gradient either	
			side of each turning point and then reasoned their way to a	
		B1(40.1.0)		
c	<i>x</i> = 2	ы(AU 1.2)	Examiner's Comments	
		[1]		
			There appeared to be confusion as to the meaning of vertical	
			asymptote which led to a low success rate for this part.	
			[] their (e) if region is to	
			right of <i>their</i> xyalue	
			Examiner's Comments	
d		A1(AO 2 2a)	with this part.	
	<i>x</i> >2	A1(A0 2.2d)		
		[1]		
			The OCR B (MEI) H640 specification defines the terms	
			"concave upwards" and "concave downwards" as those that	
			will be used in examination questions.	

	Total	10	Product, Quotient and Chain Rules
1 5	a $f(2) = 16 - 2 = 14$. Since $f(x)$ passes through 2, 14), $f^{-1}(x)$ must pass through (14, 2)	E1 (AO2.4) [1]	
	$f'(x) = 4x^{3} - 1$ b $f'(2) = 31$ $\frac{1}{31}$	B1 (AO2.1) M1 (AO1.1) A1 (AO1.1) [3]	Accept BC
	Total	4	
1	DR $\frac{dy}{dx} = \frac{\cos x \times \frac{1}{x+2} - \ln(x+2)(-\sin x)}{(\cos x)^2}$ $x = 0, y = \ln 2$ $x = 0, \frac{dy}{dx} = \frac{1}{2}$ So equation of tangent is $y = \frac{1}{2}x + \ln 2$	M1(AO 3.1a) A1(AO 1.1) B1(AO 1.1) M1(AO 1.1) A1(AO 1.1) [5]	Use of quotient rule
	Total	5	
1 7	^a $\frac{\mathrm{d}y}{\mathrm{d}x} = 1 + \ln x$	B1(AO 1.1a) B1(AO 1.1)	B1 for each term

b	$\frac{1}{x} > 0$ $\frac{1}{x} < \frac{\pi}{2}$	B1 (AO 2.2a) B1 (AO 2.2a) [2]	Correct lower limit 0 stated Correct upper limit $\frac{\pi}{2}$ stated	Product, Quotient and Chain Rules
	$0 < \frac{1}{x} < \frac{\pi}{2} \Longrightarrow \cos\left(\frac{1}{x}\right) > 0$	M1 (AO 2.2a)		
С	$-\frac{1}{x^2} < 0$	M1 (AO 1.1) A1 (AO 2.4)		
	Hence $h'(x) < 0$ so $h(x)$ is a decreasing function	[3]	AG Convincing completion needed	
	Total	7		