1. A curve has equation $x^2 + 2y^2 = 4x$.

dy

- i. By differentiating implicitly, find \overline{dx} in terms of x and y.
- ii. Hence find the exact coordinates of the stationary points of the curve. [You need not determine their nature.]

[3]

[6]

[3]

2. A curve has implicit equation $y^2 + 2x \ln y = x^2$.

Verify that the point (1, 1) lies on the curve, and find the gradient of the curve at this point.

з.

Fig. 6 shows part of the curve sin 2y = x - 1. P is the point with coordinates (1.5, $\frac{1}{12}\pi$) on the curve.

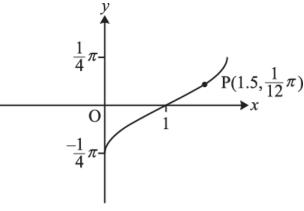
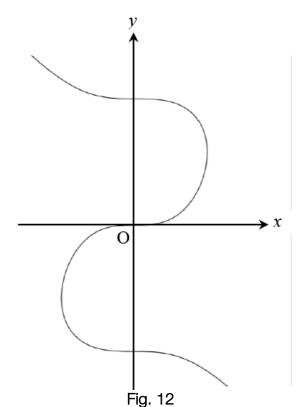


Fig. 6

i. Find $\frac{dy}{dx}$ in terms of *y*.

Hence find the exact gradient of the curve $\sin 2y = x - 1$ at the point P.


[4]

The part of the curve shown is the image of the curve $y = \arcsin x$ under a sequence of two geometrical transformations.

ii. Find y in terms of x for the curve sin 2y = x - 1.

Hence describe fully the sequence of transformations.

4. Fig. 12 shows the curve $2x^3 + y^3 = 5y$.

- (a) Find the gradient of the curve $2x^3 + y^3 = 5y$ at the point (1, 2), giving your answer in exact form. [4]
- (b) Show that all the stationary points of the curve lie on the *y*-axis. [2]
- A curve has equation $3x^{\frac{2}{3}} + 2y^{\frac{1}{3}} = 7$.
 - (i) By differentiating implicitly, find $\frac{dy}{dx}$ in terms of x and y.
 - (ii) Hence find the gradient of the curve at the point with coordinates (1, 8). [2]
- ^{6.} You must show detailed reasoning in this question.

The equation of a curve is

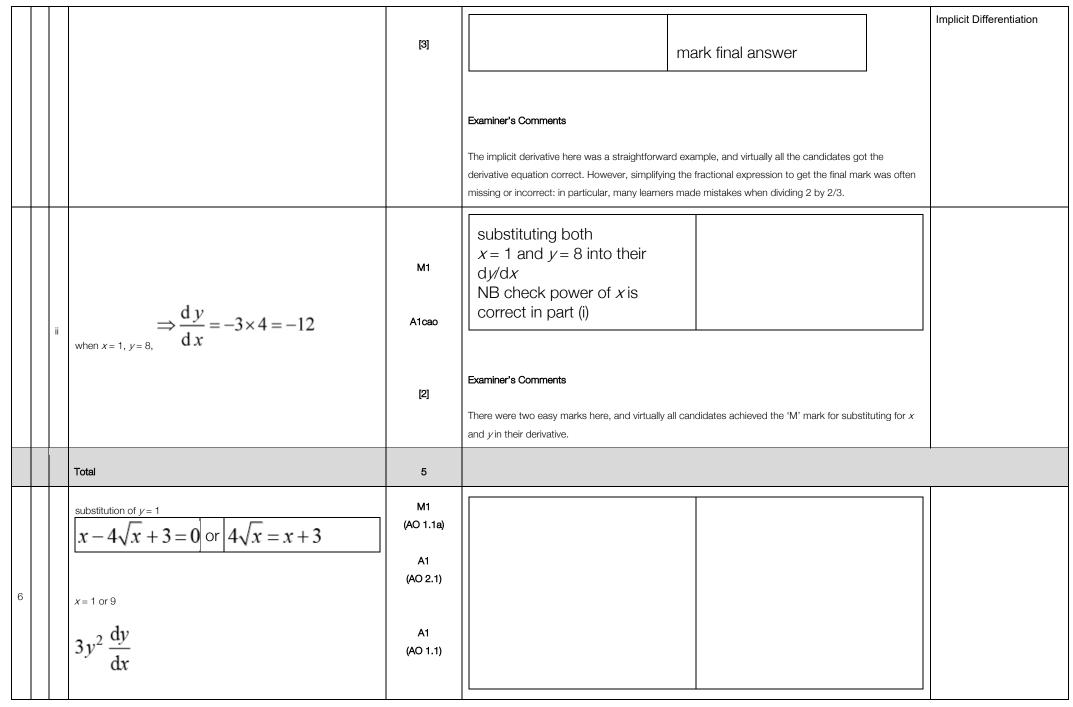
$$y^3 - xy + 4\sqrt{x} = 4$$

Find the gradient of the curve at each of the points where y = 1. [9]

END OF QUESTION paper

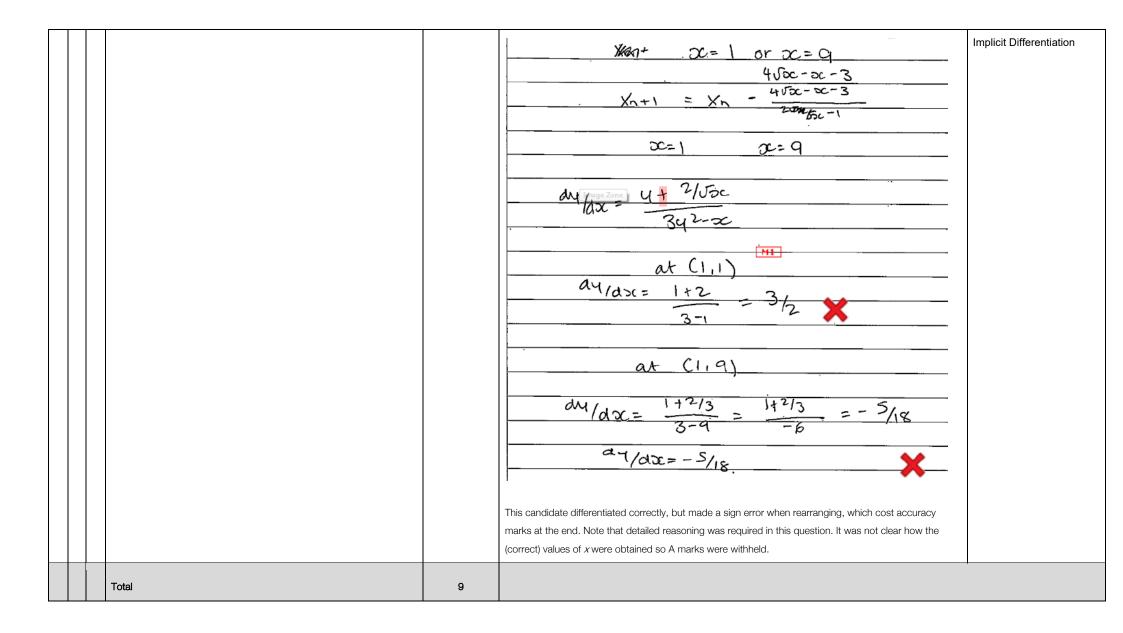
5.

[3]


Mark scheme

Qu	estion	Answer/Indicative content	Marks	Part marks and guidance	
1	i	$2x + 4y\frac{\mathrm{d}y}{\mathrm{d}x} = 4$	M1	$4y\frac{\mathrm{d}y}{\mathrm{d}x}$	Rearranging for <i>y</i> and differentiating explicitly is M0
	i		A1	correct equation	Ignore superfluous dy/dx = unless used subsequently
		dv = 4-2x		o.e., but mark final answer	
	i	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4-2x}{4y}$	A1	Examiner's Comments	
				This relatively simple implicit differentiation was very well done by almost all candidates.	
	ii	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \implies x = 2$	B1dep	dep correct derivative	
				√2, -√2	
					can isw, penalise inexact answers of ±1.41 or better
	ii	$\Rightarrow 4 + 2y^2 = 8 \Rightarrow y^2 = 2, y = \sqrt{2} \text{ or } -\sqrt{2}$	B1B1		once only
				Examiner's Comments	-1 for extra solutions found from using $y = 0$
				Most candidates scored two out of three for the point (2, $\sqrt{2}$), but missed the y = . $\sqrt{2}$ solution. In a few cases, the denominator was set to zero, giving y = 0.	
		Total	6		
2		$y^2 + 2x \ln y = x^2$			
		$1^2 + 2 \times 1 \times \ln 1 = 1^2$ so (1, 1) lies on the curve.	B1	clear evidence of verification needed	at least "1 + 0 = 1"

			M1	$d/dx(y^2) = 2ydy/dx$	Implicit Differentiation must be correct
			M1	$d/dx(2x \ln y) = 2\ln y + 2x/y dy/dx$	must be correct
		$2y\frac{dy}{dx} + 2\ln y + 2x.\frac{1}{y}.\frac{dy}{dx} = 2x$	A1cao		condone $dy/dx = \dots$ unless pursued
		$[\Rightarrow \frac{dy}{dx} = \frac{2x - 2\ln y}{2y + 2x / y}]$			
		when $x = 1$, $y = 1$, $\frac{dy}{dx} = \frac{2 - 2\ln 1}{2 + 2}$	M1	substituting both $x = 1$ and $y = 1$ into their dy/dx or their equation in x , y and dy/dx	$2\frac{dy}{dx} + 2\ln 1 + 2\frac{dy}{dx} = 2$
				not from wrong working	
		= 1/2	A1cao	Examiner's Comments	
				Implicit differentiation was well understood, although differentiating the '2xlny' term using the product rule defeated some candidates, and there were some algebraic slips in re-arranging to find dy/dx (which virtually all candidates did before substituting $x = 1$ and $y = 1$).	
		Total	6		
3	i	$2\cos 2y' dy/dx = 1$	M1	$k\cos 2y dy/dx = 1$	or $dx/dy = k \cos 2y$, $k \cos 2y dy = dx$
	i	$\Rightarrow dy/dx = 1/(2\cos 2y)$	A1		$dy/dx = k \cos 2y$ is M0
	i	when $x = 1\frac{1}{2}$, $y = \pi/12$, $dy/dx = 1/(2\cos(\pi/6))$	M1*	substituting $y = \pi/12$ *dep 1 st M1	
					isw from correct exact answer
	i	$= 1/\sqrt{3}$	A1	or √3/3	Examiner's Comments
					This question as also very well done, with half the


				Implicit Differentiation candidates scoring full
				marks.
				The implicit differentiation
				was well understood,
				though there were the usual
				blemishes from mixing up
				the derivative and integral
				formulae for sin 2 <i>y</i> . A few
				candidates re-arranged the
				equation to get x in terms of
				y, then found dx/dy, and
				then the reciprocal dy/dx.
	ii $2y = \arcsin(x - 1)$	M1		
	$1 2y = \arcsin(x - 1)$	IVI I		
i	ii $\Rightarrow y = \frac{1}{2} \arcsin(x - 1)$	A1	or $\frac{1}{2} \sin^{-1}(x-1)$	
			(1)	
	ii translation of 1 unit in positive <i>x</i> -direction	B1	or translation $\begin{pmatrix} 1\\0 \end{pmatrix}$	allow 'shift', but not 'move',
				vector only is B0
				transformations can be in
				either order
				Examiner's Comments
				This question as also very
		B1		well done, with half the
				candidates scoring full
	ii [one-way] stretch s.f. ½ in y-direction		not 'shrink', 'squash' etc	marks.
				Re-arranging the given
				implicit equation to give $y =$
				$\frac{1}{2} \arcsin(x-1)$ was well
				understood, and the
				transformations were usually
				accurately described. Note

					Implicit Differentiation that the preferred terms here are 'translation' and 'one-way stretch'.
		Total	8		
		$6x^{2} + 3y^{2}\frac{dy}{dx} = 5\frac{dy}{dx}\left[\Rightarrow \frac{dy}{dx} = \frac{6x^{2}}{5 - 3y^{2}} \right]$	M1(AO1.1a) A1(AO1.1)	implicit differentiation correct	
4	а	when $x = 1, y = 2, 6 + 12 \frac{dy}{dx} = 5 \frac{dy}{dx}$	M1(AO1.1) A1cao(AO2.1)	substituting $x = 1$, $y = 2$	
		$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{6}{7}$	[4]		
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \text{ so } 6x^2 = 0$	B1(AO1.2)	dv	
	b	ux	E1(AO2.1)	$\frac{dy}{dx} = 0$ Substitute $\frac{dy}{dx} = 0$ into their differentiated expression Completion of argument	
		x = 0 so all stationary points lie on <i>y</i> -axis	[2]		
		Total	6		
5	i	$2x^{-\frac{1}{3}} + \frac{2}{3}y^{-\frac{2}{3}}\frac{dy}{dx} = 0$ $\Rightarrow \frac{dy}{dx} = -3x^{-\frac{1}{3}}y^{\frac{2}{3}} \text{ o.e.}$	M1 A1 A1	$\frac{d}{dx}(y^{\frac{1}{3}}) = \frac{1}{3}y^{-\frac{2}{3}}\frac{dy}{dx}$ correct equation must simplify 2 / (2/3) = 3	

$$\begin{bmatrix} -x \times \frac{dy}{dx} - y] \text{ or } x \times \frac{dy}{dx} + y \\ y \otimes x_{10} \\ 3y^2 \frac{dy}{dx} - x \frac{dy}{dx} - y + \frac{2}{\sqrt{x}} [= 0] \\ \text{about the order $x = 1 \text{ or } bar x = 0 \\ m = -\frac{1}{2} [\text{ at } (1, 1)] \\ m = -\frac{1}{18} [\text{ at } (1, 9)] \\ \end{bmatrix} \begin{bmatrix} A_1 \\ y \otimes 1, \eta \\ M_1 \\ y \otimes 0, \eta \\ M_1 \\ y \otimes 0, \eta \\ M_1 \\ y \otimes 0, \eta \\ M_1 \\ y \otimes 1, \eta \\ M_1 \\ H_1 \\$$$

	whe	en finding the values of <i>x</i> .	Implicit Differentiation
	Exem	inlar 3	
		$\frac{1474}{34} + \frac{3}{24} + \frac{4}{32} = 4$ $\frac{34^{2}}{34^{2}} + \frac{4}{34} + \frac{4}{32} = 4$ $\frac{34^{2}}{34^{2}} - \frac{2}{34^{2}} + \frac{4}{32} + \frac{3}{34^{2}} + \frac{3}{34$	
		$\frac{4\sqrt{2}-\infty}{2}=3$	
		25=9	

