1.

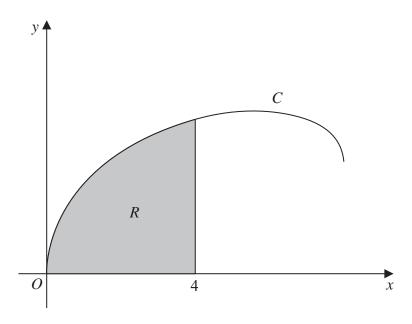


Figure 6

Figure 6 shows a sketch of the curve C with parametric equations

$$x = 8\sin^2 t \qquad y = 2\sin 2t + 3\sin t \qquad 0 \leqslant t \leqslant \frac{\pi}{2}$$

The region R, shown shaded in Figure 6, is bounded by C, the x-axis and the line with equation x = 4

(a) Show that the area of R is given by

$$\int_0^a \left(8 - 8\cos 4t + 48\sin^2 t\cos t\right) \mathrm{d}t$$

where a is a constant to be found.

(5)

(b) Hence, using algebraic integration, find the exact area of R.

(4)

2. A curve has equation y = f(x), where

$$f(x) = \frac{7xe^x}{\sqrt{e^{3x} - 2}}$$
 $x > \ln \sqrt[3]{2}$

(a) Show that

$$f'(x) = \frac{7e^x(e^{3x}(2-x) + Ax + B)}{2(e^{3x} - 2)^{\frac{3}{2}}}$$

where A and B are constants to be found.

(5)

(b) Hence show that the *x* coordinates of the turning points of the curve are solutions of the equation

$$x = \frac{2e^{3x} - 4}{e^{3x} + 4} \tag{2}$$

The equation $x = \frac{2e^{3x} - 4}{e^{3x} + 4}$ has two positive roots α and β where $\beta > \alpha$

A student uses the iteration formula

$$x_{n+1} = \frac{2e^{3x_n} - 4}{e^{3x_n} + 4}$$

in an attempt to find approximations for α and β

Diagram 1 shows a plot of part of the curve with equation $y = \frac{2e^{3x} - 4}{e^{3x} + 4}$ and part of the line with equation y = x

Using Diagram 1 on the nect page

(c) draw a staircase diagram to show that the iteration formula starting with $x_1 = 1$ can be used to find an approximation for β

(1)

Use the iteration formula with $x_1 = 1$, to find, to 3 decimal places,

(d) (i) the value of x_2

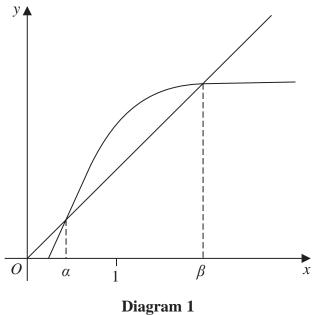
(ii) the value of
$$\beta$$

Using a suitable interval and a suitable function that should be stated

(e) show that $\alpha = 0.432$ to 3 decimal places. (2)

Question 2 continued

Only use the copy of Diagram 1 if you need to redraw your answer to part (c).



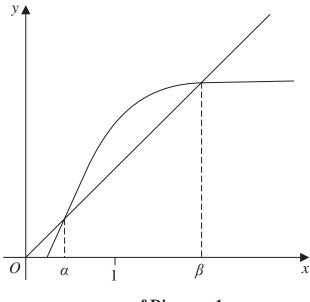


Diagram 1

copy of Diagram 1

3.	In this question you must show all stages of your worki			
	Solutions relying on calculator technology are not acceptable.			

A curve has equation

$$x^3 + 2xy + 3y^2 = 47$$

(a) Find
$$\frac{dy}{dx}$$
 in terms of x and y

(4)

The point P(-2, 5) lies on the curve.

(b) Find the equation of the normal to the curve at P, giving your answer in the form ax + by + c = 0, where a, b and c are integers to be found.

(3)