Questions

Q1.

The curve *C* has parametric equations

(a) Find an expression for
$$\frac{dy}{dx}$$
 in terms of *t*.

The point *P* lies on *C* where $t = \frac{2\pi}{3}$

The line *I* is the normal to *C* at *P*.

(b) Show that an equation for *I* is

$$2x - 2\sqrt{3}y - 1 = 0$$

The line / intersects the curve C again at the point Q.

(c) Find the exact coordinates of Q.

You must show clearly how you obtained your answers.

(6)

(5)

(2)

(Total for question = 13 marks)

Q2.

The curve *C* has equation

$$px^3 + qxy + 3y^2 = 26$$

where p and q are constants.

(a) Show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{apx^2 + bqy}{qx + cy}$$

where *a*, *b* and *c* are integers to be found.

Given that

- the point P(-1, -4) lies on C
- the normal to C at P has equation 19x + 26y + 123 = 0

(b) find the value of p and the value of q.

(5)

(4)

(Total for question = 9 marks)

Q3.

The curve *C* has parametric equations

 $x = \sin 2\theta$ $y = \csc^3\theta$ $0 < \theta < \frac{\pi}{2}$

(a) Find an expression for $\frac{dy}{dx}$ in terms of θ

(3)

(b) Hence find the exact value of the gradient of the tangent to C at the point where y = 8

(3)

(Total for question = 6 marks)

<u>Mark Scheme</u>

Q1.

Question	Scheme	Marks	AOs	
(a)	Attempts $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$	M1	1.1b	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sqrt{3}\sin 2t}{\sin t} \left(=2\sqrt{3}\cos t\right)$	A1	1.1b	
		(2)		
(b)	Substitutes $t = \frac{2\pi}{3}$ in $\frac{dy}{dx} = \frac{\sqrt{3}\sin 2t}{\sin t} = (-\sqrt{3})$	M1	2.1	
	Uses gradient of normal = $-\frac{1}{\frac{dy}{dx}} = \left(\frac{1}{\sqrt{3}}\right)$	М1	2.1	
	Coordinates of $P = \left(-1, -\frac{\sqrt{3}}{2}\right)$	B1	1.1b	
	Correct form of normal $y + \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}}(x+1)$	M1	2.1	
	Completes proof $\Rightarrow 2x - 2\sqrt{3}y - 1 = 0 *$	A1*	1.1b	
		(5)		
(C)	Substitutes $x = 2\cos t$ and $y = \sqrt{3}\cos 2t$ into $2x - 2\sqrt{3}y - 1 = 0$	M1	3.1a	
	Uses the identity $\cos 2t = 2\cos^2 t - 1$ to produce a quadratic in $\cos t$	M1	3.1a	
	$\Rightarrow 12\cos^2 t - 4\cos t - 5 = 0$	A1	1.1b	
	Finds $\cos t = \frac{5}{6}, \frac{1}{2}$	M1	2.4	
	Substitutes their $\cos t = \frac{5}{6}$ into $x = 2\cos t$, $y = \sqrt{3}\cos 2t$,	M1	1.1b	
	$\mathcal{Q} = \left(\frac{5}{3}, \frac{7}{18}\sqrt{3}\right)$	A1	1.1b	
		(6)		
	· · · · · · · · · · · · · · · · · · ·			

Notes:
(a)
M1: Attempts
$$\frac{dy}{dx} = \frac{dy'_{dt}}{dt'_{dt}}$$
 and achieves a form $k \frac{\sin 2t}{\sin t}$ Alternatively candidates may apply the
double angle identity for $\cos 2t$ and achieve a form $k \frac{\sin t \cos t}{\sin t}$
A1: Scored for a correct answer, either $\frac{\sqrt{5} \sin 2t}{\sin t}$ or $2\sqrt{3} \cos t$
(b)
M1: For substituting $t = \frac{2\pi}{3}$ in their $\frac{dy}{dx}$ which must be in terms of t
M1: Uses the gradient of the normal is the negative reciprocal of the value of $\frac{dy}{dx}$. This may be
seen in the equation of l .
B1: States or uses (in their tangent or normal) that $P = \left(-1, -\frac{\sqrt{5}}{2}\right)$
M1: Uses their numerical value of $-\frac{1}{2}/\frac{dy}{dx}$ with their $\left(-1, -\frac{\sqrt{5}}{2}\right)$ to form an equation of the
normal at P
A1*: This is a proof and all aspects need to be correct. Correct answer only $2x - 2\sqrt{5}y - 1 = 0$
(c)
M1: Is the identity $\cos 2t = 2\cos^2 t - 1$ to produce an equation
in t . Alternatively candidates could use $\cos 2t = 2\cos^2 t - 1$ to set up an equation of the form
 $y = 4x^2 + B$.
M1: Uses the identity $\cos 2t = 2\cos^2 t - 1$ to produce a quadratic equation in $\cos t$
In the alternative method it is for combining their $y = 4x^2 + B$ with $2x - 2\sqrt{3}y - 1 = 0$ to get
an equation in just one variable
A1: For the correct quadratic equation $12\cos^2 t - 4\cos t - 5 = 0$
Alternatively the equations in x and y are $3x^2 - 2x - 5 = 0$ $12\sqrt{3}y^2 + 4y - 7\sqrt{3} = 0$
M1: Substitutes their $\cos t = \frac{5}{6}$ or their $t = \arccos(\frac{5}{6})$ in $x = 2\cos t$ and $y = \sqrt{3}\cos 2t$
If a value of x or y has been found it is for finding the other coordinate.
A1: $Q = \left(\frac{5}{3}, \frac{7}{18}\sqrt{3}\right)$. Allow $x = \frac{5}{3}, y = \frac{7}{18}\sqrt{5}$ but do not allow decimal equivalents.

Q2.

Question	Scheme	Marks	AOs
(a)	$\frac{\mathrm{d}}{\mathrm{d}x}(3y^2) = 6y\frac{\mathrm{d}y}{\mathrm{d}x}$		
	or	M1	2.1
	$\frac{\mathrm{d}}{\mathrm{d}x}(qxy) = qx\frac{\mathrm{d}y}{\mathrm{d}x} + qy$		
	$3px^2 + qx\frac{dy}{dx} + qy + 6y\frac{dy}{dx} = 0$	A1	1.1b
	$(qx+6y)\frac{dy}{dx} = -3px^2 - qy \Rightarrow \frac{dy}{dx} = \dots$	dM1	2.1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-3px^2 - qy}{qx + 6y}$	A1	1.1b
		(4)	
(b)	$p(-1)^{3} + q(-1)(-4) + 3(-4)^{2} = 26$	M1	1.1b
	$19x + 26y + 123 = 0 \Longrightarrow m = -\frac{19}{26}$	B1	2.2a
-	$\frac{-3p(-1)^2 - q(-4)}{q(-1) + 6(-4)} = \frac{26}{19} \text{or} \frac{q(-1) + 6(-4)}{3p(-1)^2 + q(-4)} = -\frac{19}{26}$	M1	3.1a
	$p-4q=22$, $57p-102q=624 \Rightarrow p=,q=$	dM1	1.1b
	p = 2, q = -5	A1	1.1b
		(5)	
			marks)

Notes (a) M1: For selecting the appropriate method of differentiating: Allow this mark for either $3y^2 \rightarrow \alpha_y \frac{dy}{dx}$ or $qxy \rightarrow \alpha_x \frac{dy}{dx} + \beta_y$ A1: Fully correct differentiation. Ignore any spurious $\frac{dy}{dx} = \dots$ dM1: A valid attempt to make $\frac{dy}{dx}$ the subject with 2 terms only in $\frac{dy}{dx}$ coming from qxy and $3y^2$ Depends on the first method mark. A1: Fully correct expression (b) M1: Uses x = -1 and y = -4 in the equation of C to obtain an equation in p and q B1: Deduces the correct gradient of the given normal. This may be implied by e.g. $19x + 26y + 123 = 0 \Rightarrow y = -\frac{19}{26}x + ... \Rightarrow$ Tangent equation is $y = \frac{26}{19}x + ...$ M1: Fully correct strategy to establish an equation connecting p and q using x = -1 and y = -4 in their $\frac{dy}{dx}$ and the gradient of the normal. E.g. $(a) = -1 \div \text{their} - \frac{19}{26}$ or $-1 \div (a) = \text{their} - \frac{19}{26}$ dM1: Solves simultaneously to obtain values for p and q. Depends on both previous method marks. A1: Correct values Note that in (b), attempts to form the equation of the normal in terms of p and q and then compare coefficients with 19x + 26y + 123 = 0 score no marks. If there is any doubt use Review.

Q3.

Question	Scheme	Marks	AOs
(a)	$y = \csc^3 \theta \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}\theta} = -3\csc^2 \theta \csc \theta \cot \theta$	B1	1.1b
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}\theta} \div \frac{\mathrm{d}x}{\mathrm{d}\theta}$	M1	1.1b
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-3\mathrm{cosec}^3\theta\cot\theta}{2\cos2\theta}$	A1	1.1b
		(3)	
(b)	$y = 8 \Rightarrow \csc^3 \theta = 8 \Rightarrow \sin^3 \theta = \frac{1}{8} \Rightarrow \sin \theta = \frac{1}{2}$	M1	3.1a
	$\theta = \frac{\pi}{6} \Rightarrow \frac{dy}{dx} = \frac{-3 \operatorname{cosec}^3\left(\frac{\pi}{6}\right) \operatorname{cot}\left(\frac{\pi}{6}\right)}{2 \cos\left(\frac{2\pi}{6}\right)} = \dots$		
	or $\sin\theta = \frac{1}{2} \Rightarrow \frac{dy}{dx} = \frac{\frac{-3}{\sin^3\theta} \times \frac{\cos\theta}{\sin\theta}}{2(1-2\sin^2\theta)} = \frac{\frac{-3\times8\times\frac{\sqrt{3}/2}{1/2}}{2(1-2\times\frac{1}{4})}$	М1	2.1
	$=-24\sqrt{3}$	A1	2.2a
		(3)	

Notes(a)B1: Correct expression for $\frac{dy}{d\theta}$ seen or implied in any form e.g. $\frac{-3\cos\theta}{\sin^4\theta}$ M1: Obtains $\frac{dx}{d\theta} = k\cos 2\theta$ or $\alpha \cos^2 \theta + \beta \sin^2 \theta$ (from product rule on $\sin\theta\cos\theta$)and attempts $\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$ A1: Correct expression in any form.May see e.g. $\frac{-3\cos\theta}{2\sin^4\theta\cos 2\theta}$, $-\frac{3}{4\sin^4\theta\cos\theta-2\sin^3\theta}$ tan θ (b)M1: Recognises the need to find the value of $\sin \theta$ or θ when y = 8 and uses the y parameter toestablish its value. This should be correct work leading to $\sin\theta = \frac{1}{2}$ or e.g. $\theta = \frac{\pi}{6}$ or 30° .M1: Uses their value of $\sin \theta$ or θ in their $\frac{dy}{dx}$ from part (a) (working in exact form) in an attemptto obtain an exact value for $\frac{dy}{dx}$. May be implied by a correct exact answer.If no working is shown but an exact answer is given you may need to check that this follows their $\frac{dy}{dx}$.A1: Deduces the correct gradient