Questions

Q1.

Figure 4

Figure 4 shows a sketch of the curve with equation $x^2 - 2xy + 3y^2 = 50$

(a) Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y-x}{3y-x}$

(4)

The curve is used to model the shape of a cycle track with both *x* and *y* measured in km.

The points *P* and *Q* represent points that are furthest west and furthest east of the origin *O*, as shown in Figure 4.

Using part (a),

(b) find the exact coordinates of the point *P*.

(5)

(c) Explain briefly how to find the coordinates of the point that is furthest north of the origin *O*. (You **do not** need to carry out this calculation).

(1)

(Total for question = 10 marks)

Q2.

The curve C has equation

$$x^2 \tan y = 9 \qquad \qquad 0 < y < \frac{\pi}{2}$$

(a) Show that

$$\frac{dy}{dx} = \frac{-18x}{x^4 + 81}$$
(4)

(b) Prove that *C* has a point of inflection at $x = \sqrt[4]{27}$

(3)

(Total for question = 7 marks)

Q3.

The curve *C* has equation

$$px^3 + qxy + 3y^2 = 26$$

where p and q are constants.

(a) Show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{apx^2 + bqy}{qx + cy}$$

where *a*, *b* and *c* are integers to be found.

Given that

- the point P(-1, -4) lies on C
- the normal to C at P has equation 19x + 26y + 123 = 0

(b) find the value of p and the value of q.

(5)

(4)

(Total for question = 9 marks)

Q4.

Figure 8

Figure 8 shows a sketch of the curve *C* with equation $y = x^x$, x > 0

(a) Find, by firstly taking logarithms, the *x* coordinate of the turning point of *C*.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

The point $P(\alpha, 2)$ lies on C.

(b) Show that $1.5 < \alpha < 1.6$

A possible iteration formula that could be used in an attempt to find α is

$$x_{n+1} = 2x_n^{1-x_n}$$

Using this formula with $x_1 = 1.5$

- (c) find x_4 to 3 decimal places,
- (d) describe the long-term behaviour of x_n

(2)

(2)

(5)

(2)

(Total for question = 11 marks)

<u>Mark Scheme</u>

Q1.

Question	Scheme	Marks	AOs	
(a)	Either $3y^2 \rightarrow Ay \frac{dy}{dx}$ or $2xy \rightarrow 2x \frac{dy}{dx} + 2y$	М1	2.1	
	$2x - 2x\frac{dy}{dx} - 2y + 6y\frac{dy}{dx} = 0$	A1	1.1b	
	$(6y - 2x)\frac{\mathrm{d}y}{\mathrm{d}x} = 2y - 2x$	M1	2.1	
	$\frac{dy}{dx} = \frac{2y - 2x}{6y - 2x} = \frac{y - x}{3y - x} *$	A1*	1.1b	
		(4)		
(b)	$\left(\operatorname{At} P \text{ and } Q \frac{\mathrm{d}y}{\mathrm{d}x} \to \infty \Rightarrow\right) \operatorname{Deduces that } 3y - x = 0$	М1	2.2a	
	Solves $y = \frac{1}{3}x$ and $x^2 - 2xy + 3y^2 = 50$ simultaneously	M1	3.1a	
	$\Rightarrow x = (\pm) 5\sqrt{3} \text{OR} \Rightarrow y = (\pm) \frac{5}{3} \sqrt{3}$	A1	1.1b	
	Using $y = \frac{1}{3}x \implies x =$ AND $y =$	dM1	1.1b	
	$P = \left(-5\sqrt{3}, -\frac{5}{3}\sqrt{3}\right)$	A1	2.2a	
		(5)		
(c)	Explains that you need to solve $y = x$ and $x^2 - 2xy + 3y^2 = 50$ simultaneously and choose the positive solution	B1ft	2.4	
		(1)		
		(1	10 marks)	
Notes:				
(a) M1: For selecting the appropriate method of differentiating either $3y^2 \rightarrow Ay \frac{dy}{dx}$ or $2xy \rightarrow 2x \frac{dy}{dx} + 2y$				
It may be quite difficult awarding it for the product rule but condone $-2xy \rightarrow -2x \frac{dy}{dx} + 2y$ unless you				
see evidence that they have used the incorrect law $vu'-uv'$				
A1: Fully co Allow atter	rrect derivative $2x - 2x \frac{dy}{dx} - 2y + 6y \frac{dy}{dx} = 0$ mpts where candidates write $2xdx - 2xdy - 2ydx + 6ydy = 0$			
but watch for	r students who write $\frac{dy}{dx} = 2x - 2x\frac{dy}{dx} - 2y + 6y\frac{dy}{dx}$ This, on its own,	is A0 unless	you are	
convinced that this is just their notation. Eg $\frac{dy}{dx} = 2x - 2x\frac{dy}{dx} - 2y + 6y\frac{dy}{dx} = 0$				

M1: For a valid attempt at making $\frac{dy}{dx}$ the subject, with two terms in $\frac{dy}{dx}$ coming from $3y^2$ and 2xyLook for $(\dots \pm \dots) \frac{dy}{dx} = \dots$. It is implied by $\frac{dy}{dx} = \frac{2y - 2x}{6y - 2x}$ This cannot be scored from attempts such as $\frac{dy}{dx} = 2x - 2x\frac{dy}{dx} - 2y + 6y$ which only has one correct term. A1*: $\frac{dy}{dx} = \frac{y-x}{3y-x}$ with no errors or omissions. The previous line $\frac{dy}{dx} = \frac{2y - 2x}{6y - 2x}$ or equivalent must be seen. (b) M1: Deduces that 3y - x = 0 oe M1: Attempts to find either the x or y coordinates of P and Q by solving their $y = \frac{1}{3}x$ with $x^{2} - 2xy + 3y^{2} = 50$ simultaneously. Allow for finding a quadratic equation in x or y and solving to find at least one value for x or y. This may be awarded when candidates make the numerator = 0 is using y = xAl: $\Rightarrow x = (\pm)5\sqrt{3}$ OR $\Rightarrow y = (\pm)\frac{5}{3}\sqrt{3}$ dMI: Dependent upon the previous M, it is for finding the y coordinate from their x (or vice versa) This may also be scored following the numerator being set to 0 ie using y = xA1: Deduces that $P = \left(-5\sqrt{3}, -\frac{5}{3}\sqrt{3}\right)$ OE. Allow to be $x = \dots y = \dots$ (c) Blft: Explains that this is where $\frac{dy}{dx} = 0$ and so you need to solve y = x and $x^2 - 2xy + 3y^2 = 50$ simultaneously and choose the positive solution (or larger solution). Allow a follow through for candidates who mix up parts (b) and (c) Alternatively candidates could complete the square $(x - y)^2 + 2y^2 = 50$ and state that y would reach a maximum value when x = y and choose the positive solution from $2y^2 = 50$

Q2.	
-----	--

Question	Scheme	Marks	AOs
(a)	$x^{2} \tan y = 9 \Rightarrow 2x \tan y + x^{2} \sec^{2} y \frac{dy}{dx} = 0$	M1	3.1a
	dr	Al	1.1b
	Full method to get $\frac{dy}{dx}$ in terms of x using	M1	1.1b
	$\sec^2 y = 1 + \tan^2 y = 1 + f(x)$		
	$\frac{dy}{dx} = \frac{-2x \times \frac{9}{x^2}}{x^2 \left(1 + \frac{81}{x^4}\right)} = \frac{-18x}{x^4 + 81} *$	A1*	2.1
		(4)	
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-18x}{x^4 + 81}$		
	$d^2y = -18 \times (x^4 + 81) - (-18x)(4x^3) = 54(x^4 - 27)$		
	$\Rightarrow \frac{1}{dx^2} = \frac{1}{(x^4 + 81)^2} = \frac{1}{(x^4 + 8$	M1	1.1b
	()	AI	1.10
	States that when $x < \sqrt[4]{27} \Rightarrow \frac{d^2 y}{dx^2} < 0$		
	when $x = \sqrt[4]{27} \Rightarrow \frac{d^2 y}{dx^2} = 0$	A1	2.4
	AND when $x > \sqrt[4]{27} \Rightarrow \frac{d^2 y}{dx^2} > 0$		
	giving a point of inflection when $x = \sqrt[4]{27}$		
		(3)	
			(7 marks)
Notes:			

(a)

M1: Attempts to differentiate tan y implicitly. Eg. tan
$$y \to \sec^2 y \frac{dy}{dx}$$
 or $\cot y \to -\csc^2 y \frac{dy}{dx}$
You may well see an attempt $\tan y = \frac{9}{x^2} \Rightarrow \sec^2 y \frac{dy}{dx} = \dots$
When a candidate writes $x^2 \tan y = 9 \Rightarrow x = 3 \tan^{-\frac{1}{2}} y$ the mark is scored for $\tan^{-\frac{1}{2}} y \to \dots \tan^{-\frac{3}{2}} y \sec^2 y$
A1: Correct differentiation $2x \tan y + x^2 \sec^2 y \frac{dy}{dx} = 0$
Allow also $\sec^2 y \frac{dy}{dx} = -\frac{18}{x^3}$ or $2x = -9\csc^2 y \frac{dy}{dx}$ amongst others
M1: Full method to get $\frac{dy}{dx}$ in terms of x using $\sec^2 y = 1 + \tan^2 y = 1 + f(x)$
A1*: Proceeds correctly to the given answer of $\frac{dy}{dx} = \frac{-18x}{x^4 + 81}$

(b)

M1: Attempts to differentiate the given expression using the product or quotient rule.

For example look for a correct attempt at $\frac{vu'-uv'}{v^2}$ with u = -18x, $v = x^4 + 81$, $u' = \pm 18$, $v' = ...x^3$ If no method is seen or implied award for $\frac{\pm 18 \times (x^4 + 81) \pm 18x(ax^3)}{(x^4 + 81)^2}$ Using the product rule award for $\pm 18(x^4 + 81)^{-1} \pm 18x(x^4 + 81)^{-2} \times cx^3$ A1: Correct simplified $\frac{d^2y}{dx^2} = \frac{54(x^4 - 27)}{(x^4 + 81)^2}$ o.e. such as $\frac{d^2y}{dx^2} = \frac{54x^4 - 1458}{(x^4 + 81)^2}$ Alternatively score for showing that when a correct (unsimplified) $\frac{d^2y}{dx^2} = 0 \Rightarrow x^4 = 27 \Rightarrow x = \sqrt[4]{27}$

- Or for substituting $x = \sqrt[4]{27}$ into an unsimplified but correct $\frac{d^2y}{dx^2}$ and showing that it is 0
- A1: Correct explanation with a minimal conclusion and correct second derivative. See scheme.

It can be also be argued from $x^4 < 27$, $x^4 = 27$ and $x^4 > 27$ provided the conclusion states that the point of inflection is at $x = \sqrt[4]{27}$

Alternatively substitutes values of x either side of $\sqrt[4]{27}$ and at $\sqrt[4]{27}$, into $\frac{d^2y}{dx^2}$, finds all three values and makes a minimal conclusion.

A different method involves finding $\frac{d^3y}{dx^3}$ and showing that $\frac{d^3y}{dx^3} \neq 0$ and $\frac{d^2y}{dx^2} = 0$ when $x = \sqrt[4]{27}$

FYI
$$\frac{d^3 y}{dx^3} = \frac{23328x^3}{(x^4 + 81)^3} = 0.219$$
 when $x = \sqrt[4]{27}$

Alternative part (a) using arctan

M1: Sets
$$y = \arctan \frac{9}{x^2} \rightarrow \frac{dy}{dx} = \frac{1}{1 + \left(\frac{9}{x^2}\right)^2} \times \dots$$
 where ... could be 1
A2: $y = \arctan \frac{9}{x^2} \rightarrow \frac{dy}{dx} = \frac{1}{1 + \left(\frac{9}{x^2}\right)^2} \times -\frac{18}{x^3}$

 $1+\left(\frac{1}{x^2}\right)$

A1*: $\frac{dy}{dx} = \frac{1}{1 + \frac{81}{x^4}} \times -\frac{18}{x^3} = \frac{-18x}{x^4 + 1}$ showing correct intermediate step and no errors.

Q3.

Question	Scheme		AOs
(a)	(a) $\frac{d}{dx}(3y^2) = 6y\frac{dy}{dx}$ or $\frac{d}{dx}(3y^2) = 6y\frac{dy}{dx}$		2.1
	$\frac{d}{dx}(qxy) = qx\frac{dy}{dx} + qy$		
	$3px^2 + qx\frac{dy}{dx} + qy + 6y\frac{dy}{dx} = 0$		1.1b
	$(qx+6y)\frac{dy}{dx} = -3px^2 - qy \Rightarrow \frac{dy}{dx} = \dots$		2.1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-3px^2 - qy}{qx + 6y}$	A1	1.1b
		(4)	
(b)	$p(-1)^{3} + q(-1)(-4) + 3(-4)^{2} = 26$	M1	1.1b
	$19x + 26y + 123 = 0 \Longrightarrow m = -\frac{19}{26}$	B1	2.2a
	$\frac{-3p(-1)^2 - q(-4)}{q(-1) + 6(-4)} = \frac{26}{19} \text{or} \frac{q(-1) + 6(-4)}{3p(-1)^2 + q(-4)} = -\frac{19}{26}$	M1	3.1a
	$p-4q=22$, $57p-102q=624 \Rightarrow p=,q=$	dM1	1.1b
	p = 2, q = -5	A1	1.1b
		(5)	
		(9	marks)

Notes (a) M1: For selecting the appropriate method of differentiating: Allow this mark for either $3y^2 \rightarrow \alpha_y \frac{dy}{dx}$ or $qxy \rightarrow \alpha_x \frac{dy}{dx} + \beta_y$ A1: Fully correct differentiation. Ignore any spurious $\frac{dy}{dx} = \dots$ dM1: A valid attempt to make $\frac{dy}{dx}$ the subject with 2 terms only in $\frac{dy}{dx}$ coming from qxy and $3y^2$ Depends on the first method mark. A1: Fully correct expression (b) M1: Uses x = -1 and y = -4 in the equation of C to obtain an equation in p and q B1: Deduces the correct gradient of the given normal. This may be implied by e.g. $19x + 26y + 123 = 0 \Rightarrow y = -\frac{19}{26}x + ... \Rightarrow$ Tangent equation is $y = \frac{26}{19}x + ...$ M1: Fully correct strategy to establish an equation connecting p and q using x = -1 and y = -4 in their $\frac{dy}{dx}$ and the gradient of the normal. E.g. $(a) = -1 \div \text{their} - \frac{19}{26}$ or $-1 \div (a) = \text{their} - \frac{19}{26}$ dM1: Solves simultaneously to obtain values for p and q. Depends on both previous method marks. A1: Correct values Note that in (b), attempts to form the equation of the normal in terms of p and q and then compare coefficients with 19x + 26y + 123 = 0 score no marks. If there is any doubt use Review.

Q4.

Part	Working or answer an examiner might expect to see	Mark	Notes
(a)	$y = x^x \Longrightarrow \ln y = x \ln x$	M1	This mark is for a method to find the x -coordinate of the turning point of C by taking logarithms
	$\ln y = x \ln x \Longrightarrow \frac{1}{y} \frac{\mathrm{d}y}{\mathrm{d}x} = \ln x + 1$	M1	This mark is given for a method using implicit differentiation
		A1	This mark is given for a correct expression for $\frac{1}{y} \frac{dy}{dx}$
	Setting $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$, $\ln x + 1 = 0$	M1	This mark is given for a method for finding the turning point of <i>C</i> by setting $\frac{dy}{dx} = 0$
	$x = e^{-1}$	A1	This mark is given for correctly finding a value for the <i>x</i> -coordinate of the turning point of C
(b)	$1.5^{1.5} = 1.837, 1.6^{1.6} = 2.121$	M1	This mark is given for substituting 1.5 and 1.6 into $y = x^x$
	The curve C contains the points $(1.5, 1.8)$ and $(1.6, 2.1)$. At P, $y = 2$ Since C is continuous, $1.5 < \alpha < 1.6$	A1	This mark is given for a valid explanation that C contains the points (1.5, 1.8) and (1.6, 2.1) and is continuous
(c)	$x_1 = 1.5$ $x_2 = 2 \times 1.5^{-0.5} = 1.633$	M1	This mark is given for finding a correct value for x_2
	$x_3 = 2 \times 1.633^{-0.633} = 1.466$ $x_4 = 2 \times 1.466^{-0.466} = 1.673$	A1	This mark is given for finding a correct value for x_4
(d)	For example: x _n oscillates is periodic	B1	This mark is given for a valid statement about the long-term behaviour of χ_0
	18 non-convergent		
	between 1 and 2	B1	This mark is given for stating that the behaviour is between 1 and 2
			(Total 11 marks)