Questions

Q1.

Given $y = x(2x + 1)^4$, show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = (2x+1)^n (Ax+B)$$

where n, A and B are constants to be found.

(4)

(Total for question = 4 marks)

Q2.

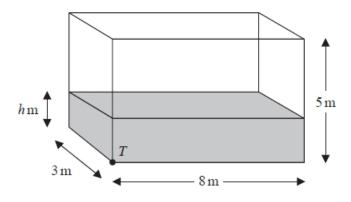


Figure 5

Water flows at a constant rate into a large tank.

The tank is a cuboid, with all sides of negligible thickness.

The base of the tank measures 8 m by 3 m and the height of the tank is 5 m.

There is a tap at a point *T* at the bottom of the tank, as shown in Figure 5.

At time *t* minutes after the tap has been opened

- the depth of water in the tank is *h* metres
- water is flowing into the tank at a constant rate of 0.48 m³ per minute
- water is modelled as leaving the tank through the tap at a rate of 0.1h m³ per minute
- (a) Show that, according to the model,

$$\frac{\mathrm{d}h}{\mathrm{d}t} = 24 - 5h$$

(4)

Given that when the tap was opened, the depth of water in the tank was 2 m,

(b) show that, according to the model,

$$h = A + B e^{-kt}$$

where A, B and k are constants to be found.

(6)

Given that the tap remains open,

(c) determine, according to the model, whether the tank will ever become full, giving a reason for your answer.

(2)

(Total for question = 12 marks)

Q3.

The curve *C* has parametric equations

$$x = 2\cos t$$
, $y = \sqrt{3}\cos 2t$, $0 \le t \le \pi$

(a) Find an expression for $\frac{dy}{dx}$ in terms of t.

(2)

The point *P* lies on *C* where $t = \frac{2\pi}{3}$

The line I is the normal to C at P.

(b) Show that an equation for *I* is

$$2x - 2\sqrt{3}y - 1 = 0$$

(5)

The line *l* intersects the curve *C* again at the point *Q*.

(c) Find the exact coordinates of Q.

You must show clearly how you obtained your answers.

(6)

(Total for question = 13 marks)

Mark Scheme

Q1.

Question	Scheme	Marks	AOs
	Attempts the product and chain rule on $y = x(2x+1)^4$	M1	2.1
	$\frac{dy}{dx} = (2x+1)^4 + 8x(2x+1)^3$	A 1	1.1b
	Takes out a common factor $\frac{dy}{dx} = (2x+1)^3 \{(2x+1) + 8x\}$	M1	1.1b
	$\frac{dy}{dx} = (2x+1)^3 (10x+1) \Rightarrow n = 3, A = 10, B = 1$	A1	1.1b

(4 marks)

Notes:

M1: Applies the product rule to reach $\frac{dy}{dx} = (2x+1)^4 + Bx(2x+1)^3$

A1: $\frac{dy}{dx} = (2x+1)^4 + 8x(2x+1)^3$

M1: Takes out a common factor of $(2x+1)^3$

A1: The form of this answer is given. Look for $\frac{dy}{dx} = (2x+1)^3 (10x+1) \Rightarrow n = 3, A = 10, B = 1$

Q2.

Question	Scheme	Marks	AOs
(a)	$\frac{\mathrm{d}V}{\mathrm{d}t} = 0.48 - 0.1h$	B1	3.1b
	$V = 24h \Rightarrow \frac{dV}{dh} = 24 \text{ or } \frac{dh}{dV} = \frac{1}{24}$	B1	3.1b
	$\frac{dh}{dt} = \frac{dV}{dt} \times \frac{dh}{dV} = \frac{0.48 - 0.1h}{24}$ or e.g. $\frac{dV}{dt} = \frac{dV}{dh} \frac{dh}{dt} \Rightarrow 0.48 - 0.1h = 24 \frac{dh}{dt}$	M1	2.1
	$1200 \frac{dh}{dt} = 24 - 5h^*$	A1*	1.1b
		(4)	
(b)	$1200 \frac{dh}{dt} = 24 - 5h \Rightarrow \int \frac{1200}{24 - 5h} dh = \int dt$ $\Rightarrow e.g. \ \alpha \ln(24 - 5h) = t(+c) \text{ oe}$ or $1200 \frac{dh}{dt} = 24 - 5h \Rightarrow \frac{dt}{dh} = \frac{1200}{24 - 5h}$ $\Rightarrow e.g. \ t(+c) = \alpha \ln(24 - 5h) \text{ oe}$	M1	3.1a
	$t = -240 \ln (24 - 5h)(+c)$ oe	A1	1.1b
	$t = 0, h = 2 \Rightarrow 0 = -240 \ln(24 - 10) + c \Rightarrow c =(240 \ln 14)$	M1	3.4
	$t = 240 \ln (14) - 240 \ln (24 - 5h)$	A1	1.1b
	$t = 240 \ln \frac{14}{24 - 5h} \Rightarrow \frac{t}{240} = \ln \frac{14}{24 - 5h} \Rightarrow e^{\frac{t}{240}} = \frac{14}{24 - 5h}$ $\Rightarrow 14e^{-\frac{t}{240}} = 24 - 5h \Rightarrow h = \dots$	ddM1	2.1
	$h = 4.8 - 2.8e^{-\frac{t}{240}}$ oe e.g. $h = \frac{24}{5} - \frac{14}{5}e^{-\frac{t}{240}}$	A1	3.3
		(6)	

(c)	Examples:		
	• As $t \to \infty$, $e^{-\frac{t}{240}} \to 0$ • When $h > 4.8$, $\frac{dV}{dt} < 0$ • Flow in = flow out at max h so $0.1h = 4.8 \to h = 4.8$ • As $e^{-\frac{t}{240}} > 0$, $h < 4.8$ • $h = 5 \Rightarrow \frac{dV}{dt} = -0.02$ or $\frac{dh}{dt} = -\frac{1}{1200}$ • $\frac{dh}{dt} = 0 \Rightarrow h = 4.8$ • $h = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} = 5 \Rightarrow e^{-\frac{t}{240}} < 0$	M1	3.1b
	 The limit for h (according to the model) is 4.8m and the tank is 5m high so the tank will never become full If h = 5 the tank would be emptying so can never be full The equation can't be solved when h = 5 	A1	3.2a
		(2)	
	(12 mar		marks)

Notes

B1: Identifies the correct expression for $\frac{dV}{dt}$ according to the model

B1: Identifies the correct expression for $\frac{dV}{dh}$ according to the model

M1: Applies $\frac{dh}{dt} = \frac{dV}{dt} \times \frac{dh}{dV}$ or equivalent correct formula with their $\frac{dV}{dt}$ and $\frac{dV}{dh}$ which may

be implied by their working

A1*: Correct equation obtained with no errors

Note that: $\frac{dV}{dt} = 0.48 - 0.1h \Rightarrow \frac{dh}{dt} = \frac{0.48 - 0.1h}{24} \Rightarrow 1200 \frac{dh}{dt} = 24 - 5h * scores$

B1B0M0A0. There must be clear evidence where the "24" comes from and evidence of the correct chain rule being applied.

(b)

M1: Adopts a correct strategy by separating the variables correctly or rearranges to obtain $\frac{dt}{dh}$

correctly in terms of h and integrates to obtain $t = \alpha \ln(24 - 5h)(+c)$ or equivalent (condone missing brackets around the "24 - 5h") and + c not required for this mark.

A1: Correct equation in any form and +c not required. Do not condone missing brackets unless they are implied by subsequent work.

M1: Substitutes t = 0 and h = 2 to find their constant of integration (there must have been some attempt to integrate)

A1: Correct equation in any form

ddM1: Uses fully correct log work to obtain h in terms of t.

This depends on both previous method marks.

A1: Correct equation

Note that the marks may be earned in a different order e.g.:

$$t+c=-240\ln\left(24-5h\right) \Longrightarrow -\frac{t}{240}+d=\ln\left(24-5h\right) \Longrightarrow A\mathrm{e}^{-\frac{t}{240}}=24-5h$$

$$t = 0, h = 2 \Rightarrow A = 14 \Rightarrow 14e^{-\frac{t}{240}} = 24 - 5h \Rightarrow h = 4.8 - 2.8e^{-\frac{t}{240}}$$

Score as M1 A1 as in main scheme then

M1: Correct work leading to $Ae^{\alpha t} = 24 - 5h$ (must have a constant "A")

A1:
$$Ae^{-\frac{t}{240}} = 24 - 5h$$

ddM1: Uses t = 0, h = 2 in an expression of the form above to find A

A1:
$$h = 4.8 - 2.8e^{-\frac{1}{240}}$$

(c)

M1: See scheme for some examples

A1: Makes a correct interpretation for their method.

There must be no incorrect working or contradictory statements.

This is not a follow through mark and if their equation in (b) is used it must be correct.

Q3.

Question	Scheme	Marks	AOs
(a)	Attempts $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dt}{dt}}$	M1	1.1b
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sqrt{3}\sin 2t}{\sin t} \left(=2\sqrt{3}\cos t\right)$	A1	1.1b
		(2)	
(b)	Substitutes $t = \frac{2\pi}{3}$ in $\frac{dy}{dx} = \frac{\sqrt{3}\sin 2t}{\sin t} = (-\sqrt{3})$	M1	2.1
	Uses gradient of normal = $-\frac{1}{dy/dx} = \left(\frac{1}{\sqrt{3}}\right)$	M1	2.1
	Coordinates of $P = \left(-1, -\frac{\sqrt{3}}{2}\right)$	В1	1.1b
	Correct form of normal $y + \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}}(x+1)$	M1	2.1
	Completes proof $\Rightarrow 2x - 2\sqrt{3}y - 1 = 0 *$	A1*	1.1b
		(5)	
(c)	Substitutes $x = 2\cos t$ and $y = \sqrt{3}\cos 2t$ into $2x - 2\sqrt{3}y - 1 = 0$	M1	3.1a
	Uses the identity $\cos 2t = 2\cos^2 t - 1$ to produce a quadratic in $\cos t$	M1	3.1a
	$\Rightarrow 12\cos^2 t - 4\cos t - 5 = 0$	A1	1.1b
	Finds $\cos t = \frac{5}{6}, \frac{1}{2}$	M1	2.4
	Substitutes their $\cos t = \frac{5}{6}$ into $x = 2\cos t$, $y = \sqrt{3}\cos 2t$,	M1	1.1b
	$Q = \left(\frac{5}{3}, \frac{7}{18}\sqrt{3}\right)$	A1	1.1b
		(6)	
	(13 ma		

Notes:

(a)

M1: Attempts $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ and achieves a form $k \frac{\sin 2t}{\sin t}$ Alternatively candidates may apply the

double angle identity for $\cos 2t$ and achieve a form $k \frac{\sin t \cos t}{\sin t}$

A1: Scored for a correct answer, either $\frac{\sqrt{3} \sin 2t}{\sin t}$ or $2\sqrt{3} \cos t$

(b)

M1: For substituting $t = \frac{2\pi}{3}$ in their $\frac{dy}{dx}$ which must be in terms of t

M1: Uses the gradient of the normal is the negative reciprocal of the value of $\frac{dy}{dx}$. This may be seen in the equation of l.

B1: States or uses (in their tangent or normal) that $P = \left(-1, -\frac{\sqrt{3}}{2}\right)$

M1: Uses their numerical value of $-1/\frac{dy}{dx}$ with their $\left(-1, -\frac{\sqrt{3}}{2}\right)$ to form an equation of the normal at P

A1*: This is a proof and all aspects need to be correct. Correct answer only $2x - 2\sqrt{3}y - 1 = 0$

(c)

M1: For substituting $x = 2\cos t$ and $y = \sqrt{3}\cos 2t$ into $2x - 2\sqrt{3}y - 1 = 0$ to produce an equation in t. Alternatively candidates could use $\cos 2t = 2\cos^2 t - 1$ to set up an equation of the form $y = Ax^2 + B$.

M1: Uses the identity $\cos 2t = 2\cos^2 t - 1$ to produce a quadratic equation in $\cos t$ In the alternative method it is for combining their $y = Ax^2 + B$ with $2x - 2\sqrt{3}y - 1 = 0$ to get an equation in just one variable

A1: For the correct quadratic equation $12\cos^2 t - 4\cos t - 5 = 0$ Alternatively the equations in x and y are $3x^2 - 2x - 5 = 0$ $12\sqrt{3}y^2 + 4y - 7\sqrt{3} = 0$

M1: Solves the quadratic equation in $\cos t$ (or x or y) and rejects the value corresponding to P.

M1: Substitutes their $\cos t = \frac{5}{6}$ or their $t = \arccos\left(\frac{5}{6}\right)$ in $x = 2\cos t$ and $y = \sqrt{3}\cos 2t$

If a value of x or y has been found it is for finding the other coordinate.

A1: $Q = \left(\frac{5}{3}, \frac{7}{18}\sqrt{3}\right)$. Allow $x = \frac{5}{3}, y = \frac{7}{18}\sqrt{3}$ but do not allow decimal equivalents.