Differentiation Cheat Sheet

Previously in Pure Year 1 , you only learnt how to ififerentitate simple expressions, such ha $2 x^{2}$.
more e ulus and method that will enable us to differentiate much more complicated functions.
Differentiating sinx and cosx
You need to be know the following two results, and be able to prove $\frac{d}{d}[\sin x]=\cos x$ and $\frac{d}{d}[\cos x]=-\operatorname{sinx}$ from first principles.

- $\frac{d}{d x}[\sin k x]=k \cos k x$
- $\frac{d}{d x}[\cos k x]=-k \sin k x$

Example 1: Prove, from first prinipies, that the derivative of sinx is cosx. You may assume that as $h \rightarrow 0$
$\underset{\substack{\text { Proven from first principles, } \\ \frac{s}{h} \rightarrow 1 \text { and } \\ \frac{\text { cosh }}{}-1} 0 \text {. }}{n}$
Wheneveryon
$f^{\prime}(x)=\lim _{h \rightarrow 0}\left[\frac{f(x+h)-f(x)}{h}\right]$
Letting $f(x)=\operatorname{sinx}$ and using the above defintion:
$f^{\prime}(x)=\lim _{h \rightarrow 0}\left[\frac{f(x+h)-f(x)}{h}\right]=\lim _{h \rightarrow 0}\left[\frac{\sin (x+h)-\sin x}{h}\right]=\lim _{h \rightarrow 0}\left[\frac{\sin x \cosh h+\operatorname{cosssinh}-\sin x}{h}\right]$
$\left.=\lim _{h \rightarrow 0} \frac{\sin x(\cosh h-1)+\cos x \sinh h}{h}\right]=\lim _{h \rightarrow 0}\left[\frac{\sin x(\cosh h-1)}{h}+\frac{\operatorname{cosx}(\sinh)}{h}\right]$
$=\lim _{h \rightarrow 0}[\sin x(0)+\cos x(1)]=\lim _{n \rightarrow 0}[\cos x]=\cos x$ Tatorising out sinx in weuneatara and the

The proof for the derivative of cosx is very similar. We would start by instead letting $f(x)=\cos x$
Differentiating exponentials and logarithm
You should also remember the following results:
$\frac{d}{d x}\left[e^{k x}\right]=k e^{k x}$
$\frac{a}{d x}\left[a^{k x}\right]=a^{k x}(k \ln a)$
$\frac{d}{d x}[\ln x]=\frac{1}{x}$

Example 2 : Show that the derivative of a^{x} is $a^{x}(\ln a)$


```
    But since we said in the first line that y= 片(ma),}\mathrm{ , we have tha
    \frac{dy}{dx}=(\operatorname{ln}a)\timesy=\frac{dy}{dx}=(\operatorname{ln}a)\times\mp@subsup{a}{}{x}\mathrm{ as required.}
```

The chain rule
The chain rwe is a powerfu method used to differentiate composite functions (i.e. expressions where one function is containe
in another function). An example of such a function would be e $x^{x^{2}-3 x+1}$, where the function $x^{2}-3 x+1$ is contanined inside the
function e^{x}. This rule allows s sto differentiate seemingly conplex expressions with ease and plays a pivotal role in this chapter.
The chair rule is.
$\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}$, where y is a function of u and u is another function of x.
We can write this in function notation, which tends to be easier to use in application:
If $y=[f(x)]^{n}$, then $\frac{d y}{\alpha}=n[f(x)]^{n-1} \times f^{\prime}(x) \quad$ [1]
If $y=f[g(x)]$ then $\frac{d y}{d x}=f^{\prime}[g(x)] \times g^{\prime}(x)$

When differentiating functions that are not of the form $y=f(x)$, the following case of the chain rule is useful:
$\frac{d y}{d x}=\frac{1}{\frac{1}{w}}$

Here are two examples showing the chain rule in action

Example 3: Differentiate $(\sin x+\cos x)^{5}$	Example 4: Differentiate ${ }^{x^{2}-4 x+2}$
This is of the form [1], where $f(x)=\sin x+\cos x$ and $n=5$.	This is of the form [2], where $g(x)=x^{2}-4 x+2 \text { and } f(x)=e^{x}$
$\Rightarrow \frac{d y}{d x}=n[f(x)]^{n-1} \times f^{\prime}(x)$	$\Rightarrow f^{\prime}(x)=e^{x}$ and $g^{\prime}(x)=2 x-4$
$=5[\sin x+\cos x]^{4} \times(\cos x-\sin x)$	$\therefore \frac{d y}{d x}=f^{\prime}[g(x)] \times g^{\prime}(x)$
$=5[\sin x+\cos x]^{4}(\cos x-\sin x)$	$=f^{\prime}\left[x^{2}-4 x+2\right] \times(2 x-4)$

The product rule
When we want to diffe
When we want to differentiate an expression that is aproduct of two functions, we can use the product rule. The product rule is

The quotient rule
When we want to differentiate an expression that is the quotient of two functions, we can use the quotient rule. The quotient rule is.

$$
\text { If } y=u v \text {, then } \frac{d y}{d x}=\frac{v \frac{d y}{d x}-u \frac{d y}{d x}}{v^{2}} \longrightarrow \frac{\text { Amore converient wayto write this is }}{\longrightarrow} \frac{d y}{d x}=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}
$$

$$
\begin{aligned}
& \text { wherer } u \text { 'and } v^{\prime} \text { 're derivative of } f \text { and } v \text { with respec } \\
& \text { tox }
\end{aligned}
$$

Note that the product rule could always be used in place of the quotient rule. For example, to differentiate $\frac{x}{(2 x+1)^{2}}$ we could use the quotient rule with $u=x, v=(2 x+1)^{2}$, but if we rewitit the expression as $x(2 x+1)^{-2}$ - then we wan also use the
Hoduct rule evith $u=x, v=(2 x+1)^{-2}$.

Differentiating trigonometric functions
Differentiating trigonometric functions
You need to learn and be able to prove the following results.
$\frac{d}{d x}[\tan k x]=k \sec ^{2} k x$
$\frac{d}{d x}[$ cosec $k x]=-k \operatorname{cosec} k x \cot k x$
$\frac{d}{d x}[\cot k x]=-k \operatorname{cosec}^{2} k x$
$\frac{d}{d x}[\sec k x]=k \sec k x \tan k x$
To prove any of the above
product/quotient rules.
Example 5: Prove that the derivative of k cosecx is $-k$ cosec $k x \cot k x$

$$
\begin{aligned}
& \operatorname{cosec} k x=\frac{1}{\sin k x}=(\sin k x)^{-1} \\
& \text { By the chair ruel [1]), we have that } \frac{d y}{d x}=-1(\sin k x)^{-2} \times(k \cos k x)=-\frac{k \cos k x}{\sin k x} k \\
& =-k \frac{\cos k x}{\sin k x x} \times \frac{1}{\sin k x}=-k \cot k x \operatorname{cosec} k x \text { as required. }
\end{aligned}
$$

The method for proving the other results is very similar

Parametric differentiation
of ind the gradient of a aunction given in parametric form, vou can use the following case of the chain rule

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
$$

Example 6 : Given that $x=2 \operatorname{sint}, y=4 t$, find $\frac{d y}{d x}$ at $t=\pi$.

$$
\frac{d x}{d t}=2 \operatorname{cost} \operatorname{and} \frac{d y}{d t}=4 \Rightarrow \frac{d y}{d x}=\frac{t}{2 \cos t}
$$

$$
\mathrm{at} t=\pi, \frac{a y}{d x}=\frac{4}{2 \cos \pi}=\frac{4}{-2}=-2
$$

$$
\begin{aligned}
& \text { If } y=u v \text {, then } \frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x} \\
& \frac{d y}{d x}=u v^{\prime}+v u^{\prime} \\
& \begin{array}{l}
\text { Where } u \text { ' and } v \text { 'red derivatives of } u \text { and } v \text { with rese } \\
\text { lox. }
\end{array}
\end{aligned}
$$

Implicit differentiation
Equation of the form $y=f$
not all equations are in the form y not all equations are in the form $y=f(x)$ and some canot even be r.
differentiate equations of this type, we can use implicit differentiation
$\frac{d}{d x}[f(y)]=f^{\prime}(y) \frac{d y}{d x}$
This means
result by $\frac{y}{d x}$
Example 7: Find $\frac{d y}{d x}$, iven that $2 x^{2}-3^{y}-4 x y=0$
We differentiate both sides with respect to $x: \frac{d}{d x}\left[2 x^{2}-3^{y}-4 x y\right]=\frac{d}{d x}[0]$

Using second derivatives
You need to be able to use the second derivative to figure out whether a curve is concave or convex on a given interval.
The function $f(x)$ is concave on a given interval if and only if $f^{\prime \prime}(x) \leq 0$ for every value of x in that interval
.

You also need to know the definition of a point of inflection and be able to determine ifa given point is a point of inflection.
A point of inffection is a point wherer $f^{\prime \prime}(x)$ changes sig. To determine a point of inflection, you must show that $f^{\prime \prime}(x)=0$ at that
point and that $f^{\prime \prime}(x)$ has opooosing signs on e eitreer side of the ooint.

Rates of change

An equation involving a derivative is known as a differential equation. You need to be able to form differential equations using information give An equation invovivg a dervivative is known asa aififerential equation. Vou need to be able to ofrer differentia equations s sing information
a question. You also need to be able to apply the chain rule to problems involving rates of change, where there are more than tww variables
involved.
Here are some general tins to remember when dealing with rate of change problems
 $u s$ about $\frac{d V}{d t}$

Example 8: Fluid flows out of a cylindrical tank with constant cross section. At time t minutes, $t>0$, the volume of fluid remaining in the tank is

We are told the rate of fluid flow is proportional to the square root of V, $s \frac{d V}{d t} \sigma \sqrt{V}$. We can write this as:
$\frac{d V}{d t}=-c \sqrt{V}=-c \sqrt{\pi r^{2} h}$ since the tank is cylindrical and c is some constant. We have a negative sign because the volume in the
$\frac{d}{d t}=-c \sqrt{V}=-c \sqrt{\pi} \pi r^{2} h$ since the tank is cylindrical and c c.
tank is decreasing with time, as fluid is flowing out of the tank.
We currently have $\frac{d v}{d t}$, but we want $\frac{d h}{d t}$. This is where we need to use the chair rule to figure out how we can get from $\frac{d n}{d t}$ to $\frac{d V}{a t}$
By the chain rule, $\frac{d h}{d t}=\frac{d V}{d t} \times \frac{d h}{d V}$. This tells us we need to find $\frac{d h}{d V}$, then multiply by $\frac{d V}{d t}$. Now reall again that the volume of the tank
By the chain rule, $\frac{d h}{d t}=\frac{d y}{d t} \times \frac{d h}{d V}$. This tells us we need to find $\frac{d V}{V h}$ the
is given by $V=\pi r^{2} h$. ifferentititing this equation with respect to h :
$\Rightarrow \frac{d h}{d \nu}=\pi r^{2}, 5 \frac{d h}{d \nu}=\frac{1}{\pi r^{2}}$.

$$
\frac{d h}{d t}=\frac{d V}{d t} \times \frac{d h}{d V}=c \sqrt{\pi r^{2} h} \times \frac{1}{\pi r^{2}}=\frac{c \sqrt{h}}{\sqrt{\pi^{2}}}
$$

But since π, r and c are all constants, we can let $\frac{c}{\sqrt{\pi r r}{ }^{2}}=k .: \frac{d h}{d t}=k \sqrt{h}$ for some constant k, as required.
©

(0) $\mathrm{f} O$ PMTEducation

