1.

Figure 1

Figure 1 shows part of the curve with equation $y = 3x^2 - 2$

The point P(2, 10) lies on the curve.

(a) Find the gradient of the tangent to the curve at P.

(2)

The point Q with x coordinate 2 + h also lies on the curve.

(b) Find the gradient of the line PQ, giving your answer in terms of h in simplest form.

(3)

(c) Explain briefly the relationship between part (b) and the answer to part (a).

(1)

2.

Figure 4

Figure 4 shows a sketch of a circle C with centre N(7, 4)

The line *l* with equation $y = \frac{1}{3}x$ is a tangent to *C* at the point *P*.

Find

- (a) the equation of line PN in the form y = mx + c, where m and c are constants, (2)
- (b) an equation for C. (4)

The line with equation $y = \frac{1}{3}x + k$, where k is a non-zero constant, is also a tangent to C.

(c) Find the value of k.	
	(3)

In this question you should show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.

Figure 2

Figure 2 shows a sketch of part of the curve C with equation

$$y = x^3 - 10x^2 + 27x - 23$$

The point P(5, -13) lies on C

The line *l* is the tangent to *C* at *P*

(a) Use differentiation to find the equation of l, giving your answer in the form y = mx + c where m and c are integers to be found.

(4)

(b) Hence verify that l meets C again on the y-axis.

(1)

The finite region R, shown shaded in Figure 2, is bounded by the curve C and the line l.

(c) Use algebraic integration to find the exact area of R.

(4)

4. The curve C has equation

$$px^3 + qxy + 3y^2 = 26$$

where p and q are constants.

(a) Show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{apx^2 + bqy}{qx + cy}$$

where a, b and c are integers to be found.

(4)

Given that

- the point P(-1, -4) lies on C
- the normal to C at P has equation 19x + 26y + 123 = 0
- (b) find the value of p and the value of q.

(5)

5. The curve C has parametric equations

$$x = \sin 2\theta$$
 $y = \csc^3 \theta$ $0 < \theta < \frac{\pi}{2}$

(a) Find an expression for $\frac{dy}{dx}$ in terms of θ

(3)

(b) Hence find the exact value of the gradient of the tangent to C at the point where y = 8

(3)

6. In this question you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

The curve *C* has equation y = f(x) where $x \in \mathbb{R}$

Given that

- $f'(x) = 2x + \frac{1}{2}\cos x$
- the curve has a stationary point with x coordinate α
- α is small
- (a) use the small angle approximation for $\cos x$ to estimate the value of α to 3 decimal places.

(3)

The point P(0, 3) lies on C

(b) Find the equation of the tangent to the curve at P, giving your answer in the form y = mx + c, where m and c are constants to be found.

(2)

7.	In this question you must show all stages of your working.
	Solutions relying on calculator technology are not acceptable.

A curve has equation

$$x^3 + 2xy + 3y^2 = 47$$

(a) Find
$$\frac{dy}{dx}$$
 in terms of x and y

(4)

The point P(-2, 5) lies on the curve.

(b) Find the equation of the normal to the curve at P, giving your answer in the form ax + by + c = 0, where a, b and c are integers to be found.

(3)