1.	The curve	C has	equation	y = f(x)	where

$$f(x) = ax^3 + 15x^2 - 39x + b$$

and a and b are constants.

Given

- the point (2, 10) lies on C
- the gradient of the curve at (2, 10) is -3
- (a) (i) show that the value of a is -2
 - (ii) find the value of b.

(4)

(b) Hence show that *C* has no stationary points.

(3)

(c) Write f(x) in the form (x-4)Q(x) where Q(x) is a quadratic expression to be found.

(2)

(d) Hence deduce the coordinates of the points of intersection of the curve with equation

$$y = f(0.2x)$$

and the coordinate axes.

(2)

2.	(a) Factorise completely $9x - x^3$	
	The curve C has equation	(2)
	$y = 9x - x^3$	
	(b) Sketch C showing the coordinates of the points at which the curve cuts the x -axis.	(2)
	The line l has equation $y = k$ where k is a constant.	
	Given that C and l intersect at 3 distinct points,	
	(c) find the range of values for k , writing your answer in set notation.	
	Solutions relying on calculator technology are not acceptable.	(3)

_	\sim .	
12	Given	that
J.	CHACH	ша

$$y = 2x^2$$

use differentiation from first principles to show that

$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x$	
dx = 4x	(3)

4.

$$y = \sin x$$

where x is measured in radians.

Use differentiation from first principles to show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos x$$

You may

- use without proof the formula for $sin(A \pm B)$
- assume that as $h \to 0$, $\frac{\sin h}{h} \to 1$ and $\frac{\cos h 1}{h} \to 0$

(5)