(4)

1. A company makes drinks containers out of	t metal	
---	---------	--

The containers are modelled as closed cylinders with base radius r cm and height h cm and the capacity of each container is $355 \,\mathrm{cm}^3$

The metal used

- for the circular base and the curved side costs 0.04 pence/cm²
- for the circular top costs 0.09 pence/cm²

Both metals used are of negligible thickness.

(a) Show that the total cost, C pence, of the metal for one container is given by

$$C = 0.13\pi r^2 + \frac{28.4}{r} \tag{4}$$

(b) Use calculus to find the value of r for which C is a minimum, giving your answer to 3 significant figures.

(c) Using $\frac{d^2C}{dr^2}$ prove that the cost is minimised for the value of r found in part (b).

(d) Hence find the minimum value of C, giving your answer to the nearest integer. (2)

2. A curve has equation

$$y = \frac{2}{3}x^3 - \frac{7}{2}x^2 - 4x + 5$$

 $y = \frac{2}{3}x^3 - \frac{7}{2}x^2 - 4x + 5$ (a) Find $\frac{dy}{dx}$ writing your answer in simplest form.

(2)

	(2)
(b) Hence find the range of values of x for which y is decreasing.	(4)

3. Given that

$$y = \frac{x - 4}{2 + \sqrt{x}} \qquad x > 0$$

show that

	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{A\sqrt{x}}$	x > 0	
where A is a constant to be found.			(4)

4. The curve C has equation	4.	4	. The	curve	C has	s equation	n
------------------------------------	----	---	-------	-------	-------	------------	---

$$y = 5x^4 - 24x^3 + 42x^2 - 32x + 11 \qquad x \in \mathbb{R}$$

- (a) Find
 - (i) $\frac{\mathrm{d}y}{\mathrm{d}x}$

(ii)
$$\frac{d^2y}{dx^2}$$
 (3)

- (b) (i) Verify that C has a stationary point at x = 1
 - (ii) Show that this stationary point is a point of inflection, giving reasons for your answer.

(4)

5.

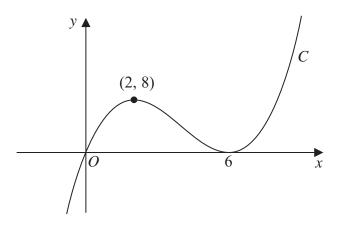


Figure 1

Figure 1 shows a sketch of a curve C with equation y = f(x) where f(x) is a cubic expression in x.

The curve

- passes through the origin
- has a maximum turning point at (2, 8)
- has a minimum turning point at (6, 0)
- (a) Write down the set of values of x for which

$$f'(x) < 0 \tag{1}$$

The line with equation y = k, where k is a constant, intersects C at only one point.

(b) Find the set of values of k, giving your answer in set notation.

(2)

(c) Find the equation of C. You may leave your answer in factorised form.

(3)

6.

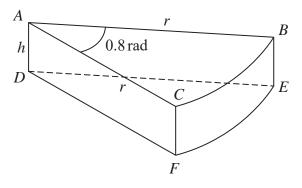


Figure 5

A company makes toys for children.

Figure 5 shows the design for a solid toy that looks like a piece of cheese.

The toy is modelled so that

- face ABC is a sector of a circle with radius rcm and centre A
- angle BAC = 0.8 radians
- faces ABC and DEF are congruent
- edges AD, CF and BE are perpendicular to faces ABC and DEF
- edges AD, CF and BE have length h cm

Given that the volume of the toy is 240 cm³

(a) show that the surface area of the toy, $S \text{ cm}^2$, is given by

$$S = 0.8r^2 + \frac{1680}{r}$$

making your method clear.

(4)

Using algebraic differentiation,

(b) find the value of r for which S has a stationary point.

(4)

(c) Prove, by further differentiation, that this value of *r* gives the minimum surface area of the toy.

(2)

7.

$$f(x) = x^3 + 2x^2 - 8x + 5$$

(a) Find f''(x)

(2)

- (b) (i) Solve f''(x) = 0
 - (ii) Hence find the range of values of x for which f(x) is concave.

(2)
