Differentiation Cheat Sheet

Differentiation is a process that helps us to calculate gradient or slope of a function at different points. It also help us to identify change in one variable with respect to another variable. You will learn real life application of differentiation in this topic

Derivative
Notation:
$\frac{d y}{d x}$ of $f^{\prime}(x)$ represents derivative of $y=f(x)$ with respect to x

Gradient of curves:

Unlike straight lines, the gradient of a curve changes constantly. The gradient of a curve at any given point is the same as calculating gradient of the tangent at that given point. You can find exact gradient of a curve at any given point using derivatives.

Finding derivative:

In this section you will learn how to find derivative of a function (i.e. exact gradient of a curve or function at a given point)
Consider the following figure for a curve $y=f(x)$

As point B moves closer to point A, the gradient of chord $A B$ gets closer To the gradient of tangent to the curve at A. ecordinate of A is $\left(x_{0} f\left(x_{0}\right)\right)$ and B is $\left(x_{0}+h, f\left(x_{0}+h\right)\right.$). So, the gradient of $A B$ is $\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$. As h gets smaller, gradient of $A B$ gets closer to radient of curve at A.
The gradient function or the derivative of a curve $y=f(x)$ is given by $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad \lim _{h \rightarrow 0}$ means the limit as h tends to 0 . This rule is called differentiating from the first principle
Example 1: $f(x)=x^{2}$ a. Show that $f^{\prime}(x)=\lim _{h \rightarrow 0}(2 x+h)$ b. Hence deduce that $f^{\prime}(x)=2 x$ a. Use the definition of derivative
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
So $f(x)=x^{2}$ implies $f(x+h)=(x+h)^{2}$,
Substitute $f(x+h)$ and $f(x)$ into the abol
Substitute $f(x+h)$ and $f(x)$ into the above definition of
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \quad \begin{aligned} & \text { Expand the bracket } \\ & (x+h)^{2}=(x+h)\end{aligned}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h} \quad$ Factorise the numerator
b.
$f^{\prime}(x)=2 x$

From part a, we know that
$f^{\prime}(x)=\lim _{h \rightarrow 0}(2 x+h)$
Apply the limits
As $h \rightarrow 0,2 x+h \rightarrow$
$h \rightarrow 0$ means as h tends to 0 or h approaches
to $0,2 x+h$ approches to $0,2 x+h$ approaches $2 x$
Hence,
Hence, $f^{\prime}(x)=\lim _{h \rightarrow 0}(2 x+h)=2 x$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h} \Rightarrow f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0}(2 x+h)$

Differentiating x^{n}

In this chapter you will only learn how to differentiate functions of the form x^{n}, where n is any number.
In this chapter you will only earn how to differentias
$y=f(x)=x^{n}$ then $\frac{d y}{d x}=f^{\prime}(x)=n x^{n-1} \quad$ where n is any real number
$y=f(x)=a x^{n}$ then $\frac{d y}{d x}=f^{\prime}(x)=a n x^{n-1}$ where n is any real number and a is a constant
Here is an example for you to understand how to apply the results
Example 2: Find the derivative, $f^{\prime}(x)$ when $f(x)$ equals:
a. x^{6} b. $10 x^{-1}$

You are supposed to find derivative
f $f(x)=x^{6}$, use the result for x^{n}
So $f^{\prime}(x)=6 x^{6-1}=6 x^{5}$
b. $f(x)=10 x^{-1}$
Use the result for $a x^{n}$
$f^{\prime}(x)=10 \times(-1)$
$f^{\prime}(x)=10 \times(-1) \times x^{-1-1}=-10 x^{-2}$
$f^{\prime}(x)=-10 \times \frac{1}{2}$
$f^{\prime}(x)=-10 \times \frac{1}{x^{2}}=-\frac{10}{2^{2}}$
As $x^{-2}=\frac{1}{x^{2}}$

Differentiating quadratics:

A quadratic function or a curve is given by $y=a x^{2}+b x+c$, where a, b and c are constants. The derivative of y is $\frac{d y}{d x}=2 a x+b$

Note: Differentiate each term one at a time
Derivative of only a constant term is always 0 . So if $y=2$ then $\frac{d y}{d x}=0$
Example 3 : Find the gradient of the curve with equation $y=2 x^{2}-x-1$ at the point $(2,5)$ As explained in the gradient of curves section, finding the gradient of a curve at a point is same as calculating As explained in the gradient of curv.
derivative of the curve at that point.
So first, you will have to calculate the gradient of $y=2 x^{2}-x-1$
$\frac{d y}{d x}=2 \times 2 \times x^{(2-1)}-1 \times x^{(1-1)}-0 \quad$ Since 1 is a constant, derivative of a constant will be 0
$\begin{array}{ll}\frac{d x}{d y} \\ d x & =4 x-x^{0}=4 x-1 \quad \text { As } x^{0}=1\end{array}$
Now to find the derivative of y at point $(2,5)$, you need to substitute $x=2$ in the derivative function $\frac{d y}{d x}=f^{\prime}(2)=4(2)-1=8-1=7$

$$
\text { Hence, the gradient of the curve with equation } y=2 x^{2}-x-1 \text { at the point }(2,5) \text { is } 7 \text {. }
$$

Gradient, tangents and normal

In this section, you will learn to find equation of tangent and normal to a curve at a given point.
What is normal?
Normal to a curv
perpendicular to the tangent line at point A passing through A and
For a curve $y=f(x)$, the gradient of the tangent at point A with
x coordinate a is $f^{\prime}(a)$
x coordinate a is $f^{\prime}(a)$

The equation of tangent to the curve $y=f(x)$
at the point with coordinates (a, $f(a)$ is $y-f(a)=f^{\prime}(a)(x-a)$

So, since the gradient of tangent at point A is $f^{\prime}(a)$ the gradient of Normal at point A will be $-\frac{1}{f^{\prime}(a)}$
The equation of normal to the curve $y=f(x)$ at point $A \equiv(a, f(a))$ with gradient $-\frac{1}{f^{\prime}(a)}$ is given by You have come arcoss in chapter 5 that the equation of
straige line with $\left(x_{1}, x_{2}\right)$ is given by
$y-y_{1}=m\left(x-x_{2}\right)$
$y-f(a)=-\frac{1}{f^{\prime}(a)}(x-a)$
Here are some examples for you to understand how to find equation of tangent and normal.
Example 4: Find the equation of tangent and normal to the curve $y=x^{2}-7 x+10$ at the point $(2,0)$ First find the derivative of y, in order to find the gradient. Once you get the gradient function, substitute the ordinate i.e. 2 into the function
So, $\frac{d y}{d x}=2 x-7$
$\Rightarrow \frac{d y}{d x}=f^{\prime}(2)=2(2)-7=4-7=-3$
Substitute the gradient $\frac{d y}{d x}=-3, a=2$ and $f(a)=0$ into the equation of tangent
The equation of tangent is $y-f(a)=f^{\prime}(a)(x-a)$
$\Rightarrow y-0=-3(x-2) \Rightarrow y=-3 x+6$
Hence equation of tangent to the
Equation of normal:
Now as discussed earlier
the gradient of normal is $-\frac{1}{f^{\prime}(a)}=-\frac{1}{-3}=\frac{1}{3}$
So the equation of normal at point $(2,0)$ will be,
$\Rightarrow y-0=\frac{1}{3}(x-2) \Rightarrow y=\frac{(x-2)}{3}$
$y-f(a)=-\frac{1}{f^{\prime}(a)}(x-a)$
Hence the equation of normal to the curve y at $(2,0)$ is $y=\frac{(x-2)}{3}$

Increasing and decreasing function:

In this section you will be able to find out whether a function is increasing or decreasing. The function $f(x)$ in the interval $[a, b]$, for all values of x where $a<b$ is Increasing if $f^{\prime}(x) \geq 0$

Decreasing if

Second order derivative:

When you differentiate a function $y=f(x)$ once it called first order derivative i.e. $f^{\prime}(x)$ And W
or $\frac{d \lambda^{2} y}{d x^{2}}$
Example 5: Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ for $y=2 x^{2}+7 x-3$
$\frac{d y}{d x}=\left(2 \times 2 x^{2-1}\right)+7-0=4 x+7$
To find $\frac{d^{2} y}{d x^{2}}$, find the derivative of $\frac{d y}{d x}$ i.e. $4 x+7$
So, $\frac{d y}{d x^{2}}=4 \times x^{0}+0=4$ as $x^{0}=1$ and derivative of 7 is 0

Stationary points

A stationary point is any point on the curve where the gradient of the curve is 0. In this section you will learn to determine the nature of stationary poits 1. .e. whether the stationary point is local maximum, a local min. You can refer to the table below, vice versa).

Any point on the curve $y=f(x)$ where $f^{\prime}(x)=0$ is called a stationary point. for a small positive value h Type of stationary point
Local maximum
Local minimum

	$\boldsymbol{f}^{\prime}(\boldsymbol{x}$
	-ve (Negative)
	+ve (Positive)
	-ve (Negative)

Point of Inflection
(Pogaive)
+ve (Positive)
You can also use second order derivative, $f^{\prime \prime}(x)$, to determine the nature of Stationary points
If a function $f(x)$ has a stationary point when $\mathrm{x}=a\left(\right.$ (i.e. $\left.f^{\prime}(a)=0\right)$ then if:

$\boldsymbol{f}^{\prime \prime}(\boldsymbol{a})>\mathbf{0} \Rightarrow$ Local minimum $\boldsymbol{f}^{\prime \prime}(\boldsymbol{a})<\mathbf{0} \Rightarrow$ Local maximum	$\boldsymbol{f}^{\prime \prime}(\boldsymbol{a})=\mathbf{0} \rightarrow$ Could be local minimum, local maximum or point of inflection. You will have to use the above table to determine its nature.

Example 6: For $y=f(x)=x^{3}-3 x^{2}+3 x,(1,1)$ is a stationary point.
Determine the nature of the stationary yoint.
You can use $f^{\prime \prime}(x)$ to find the nature of

| Your |
| :--- | :--- |
| $(1,1)$ |
| lo |

 derivative twice
Hence, $f^{\prime}(x)=3 x^{2}-6 x+3$ $\Rightarrow f^{\prime \prime}(x)=6 x-6$ Substituting $x=1$
we get, $f^{\prime \prime}(1)=6(1)-6=0$

```
llll
```

Since the eradient on both sides of $(1,1)$ is posive, $(1,1)$ is
point of inflection
Example 7: a. Find the coordinates of the stationary point on $y=x^{4}-32 x$
b. Determine the nature of stationary point using second order derivative
$\begin{array}{ll}\begin{array}{l}\text { a. Find the derivate of } y \text { and equate to } 0 .\end{array} & \begin{array}{l}\text { b. To find the nature of stationary point, } \\ \text { find } \\ d x=4 x^{3}-32\end{array} \\ \text { finhether } f^{\prime \prime}(x)>0, f^{\prime \prime}(x)<0 \text { or }\end{array}$
$\frac{d y}{d x}=4 x^{3}-32$
and solve the eqution tind the value of $x f^{\prime \prime}(x)=0$
$4 x^{3}-32=0 \Rightarrow 4 x^{3}=32$
Hence, $x=2$
Substituting the value of x in to the original equation $\frac{\frac{d^{2} y}{d x^{2}}=4 \times 3 \times x^{3-2}-0=12 x^{2}}{}$
Substituting the value of x in to the original equation
we get y coordinate
we get y coordinate
So for $x=2, y=2^{4}-32 \times 2=-48$
Hence $(2,-48)$ is astationary point

When $x=2, \frac{d^{2} y}{d x^{2}}=12(2)^{2}=48$ Hence ($2,-48$) is a stationary point. | $\begin{array}{l}\text { Since } \\ \text { minimum }\end{array}$ |
| :--- |
| $f^{\prime \prime}(2)=48>0$, point $(2,-48)$ is a local |

Modelling with differentiation: In this section you will learn how to

In this section you will learn how to use derivatives to model real life situations involving rates of change. of change of y with respect to x. The term $d y$ is small change in y and term $d x$ is small You know that speed is the change in distance over change in time. So if $s=f(t)$ is the function that represents distance of object from a fixed point at time t, then $\frac{d s}{d t}=f^{\prime}(t)$ represents speed of the object at time t .
Example 8: Given that the volume, $V \mathrm{~cm}^{3}$, of an expanding sphere is related to its radius, $r \mathrm{~cm}$, by the formula $V=\frac{4}{3} \pi r^{3}$, find the rate of change of volume with respect to radius at the instant when the radius is 5 cm . As you know derivative represents rate of change, so in order to find rate of change of volume with respect to radius $r=5$, you will have to find $\frac{d r}{d r}$
Hence, $\frac{d V}{d r}=\frac{4}{3} \times \pi \times 3 \times r^{3-1}=4 \pi r^{2}$
When $r=5, \frac{d V}{d r}=4 \pi \times(5)^{2}=314$

