1. Fig. 11 shows the curve with parametric equations $x = 2\cos\theta$, $y = \sin\theta$, $0 \le \theta \le 2\pi$. The point P has parameter $\frac{1}{4}\pi$. The tangent at P to the curve meets the axes at A and B.

(b) Determine the area of the triangle AOB.

^{2.} In this question you must show detailed reasoning.

A curve has parametric equations

$$x = \cos t - 3t$$
 and $y = 3t - 4\cos t - \sin 2t$, for $0 \le t \le \pi$.

Show that the gradient of the curve is always negative.

[7]

[3]

^{3.} In this question you must show detailed reasoning.

Fig. 8 shows the curve with parametric equations

(a) Find the coordinates of the point on the curve with the greatest *y*-coordinate. [4]

(b) Determine the exact y-coordinates of the points where the curve crosses the y-axis. [6]

4.
A curve has parametric equations
$$x = \frac{t}{1+t^3}$$
, $y = \frac{t^2}{1+t^3}$ where $t \neq -1$.

(a) In this question you must show detailed reasoning.

Determine the gradient of the curve at the point where t = 1. [5]

(b) Verify that the cartesian equation of the curve is $x^3 + y^3 = xy$. [3]

(a) Explain why
$$\theta \neq \frac{1}{2}\pi$$
 [1]

(c) Show that the cartesian equation of the curve is
$$y = \frac{2}{1+x^2}$$
 [3]

(d) In this question you must show detailed reasoning.

The point P in the first quadrant lies on the curve. Find the coordinates of P given that OP is the normal to the curve at P. [7]

© OCR 2017.

6. A curve has parametric equations

$$x = 2 \cot \theta$$
, $y = 2 \sin^2 \theta$,

for values of θ for which both *x* and *y* are defined.

positive integers to be determined.

Show that the cartesian equation of the curve is

(a) For what values of θ , in the interval $0 \le \theta \le 2\pi$, is x undefined?

(b)

$$y = \frac{A}{x^2 + B}$$
 where A and B are

[3]

[2]

(c) Ali says that the curve lies completely above the *x*-axis. Determine whether Ali is correct. [2]

END OF QUESTION paper

Mark scheme

	Question	Answer/Indicative content	Marks	Guidance		
		$(\sqrt{2}, \frac{\sqrt{2}}{2})$		oe		
		$\frac{dy}{dy} = \frac{dy}{dx} \cdot \frac{dx}{dx}$	B1(AO1.1)			
		$dx = d\theta + d\theta$	M1(AO3.1a)			
		$=\frac{\cos\theta}{-2\sin\theta}$	A1(AO1.1)			
-	а	$\theta = \frac{\pi}{4}, \ \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{2}$	A1(AO1.1)			
			B1(AO2.1)			
			E1(AO1.1)			
		Equation of tangent is $(y - \frac{\sqrt{2}}{2}) = -\frac{1}{2}(x - \sqrt{2})$ $\Rightarrow \qquad y = -\frac{1}{2}x + \frac{1}{2}\sqrt{2} + \frac{1}{2}\sqrt{2}$	[6]			
		$\Rightarrow x+2y=2\sqrt{2}$		AG		
	b	When $x = 0$, $y = \sqrt{2}$ so A is (0, $\sqrt{2}$) When $y = 0$, $x = 2\sqrt{2}$ so B is $(2\sqrt{2}, 0)$	B1(AO1.1) B1(AO1.1) B1(AO1.1)			
		Area of triangle = $\frac{1}{2}\sqrt{2} \times 2\sqrt{2} = 2_{\text{units}^2}$	[3]			

		Total	9	Parametric Equations
2		DR $\frac{dx}{dt} = -\sin t - 3$ $\frac{dy}{dt} = 3 + 4\sin t - 2\cos 2t$ $\frac{dy}{dt} = \frac{3 + 4\sin t - 2\cos 2t}{-\sin t - 3}$ denominator is always negative since $-1 \le \sin t \le 1$ Substitution of $\cos 2t = 1 - 2\sin^2 t$ in numerator $4\sin^2 t + 4\sin t + 1$ seen in numerator Numerator is $(2\sin t + 1)^2$ so numerator is always positive and denominator is always negative, $\frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx}$	B1(AO 3.1a) B1(AO 1.1) M1(AO 2.1) E1(AO 2.4) M1(AO 1.1) A1(AO 1.1) E1(AO 2.4) [7]	
		Total	7	
3	a	$\frac{dy}{dx} = 0 \text{ when } \frac{dy}{d\theta} = \cos \theta = 0$ $\theta = \frac{1}{2}\pi, \ \frac{3}{2}\pi$	M1(AO3.1a) M1(AO1.1)	

			A1(AO1.1)	Parametric Equations
		<i>x</i> = -2	A1(AO3.2a)	
		<i>y</i> = 3	М1	
		Alternative solution	A1	
		Maximum y occurs when sin $\theta = 1$	М1	
		y=3 $\theta = \frac{1}{2}\pi$	A1	
		x = -2	[4]	
		DR 7 cos θ + 2 cos 2 θ = θ \Rightarrow 4 cos ² θ + 7 cos θ - 2 = 0	M1(AO1.1a)	Use of double angle formula
		$(4\cos\theta - 1)(\cos\theta + 2) = 0$	M1(AO1.1)	Method for solving quadratic
	b	$\cos\theta = \frac{1}{4}$ or -2	A1(AO1.1)	
		Reject $\cos \theta = -2$	B1(AO3.2a)	
			M1(AO3.1a)	May be seen later
		$\sin^2 \theta = 1 - \cos^2 \theta = 1 - \left(\frac{1}{4}\right)^2 = \frac{15}{16}$	A1(AO2.2a)	

Parametric Equations Exemplar 5 t^3 t⁶ 3 -F3/2 (1+E3)3 F3 (F3 3 +1 <u></u>"3 1+3 F-3 13 3 Because $+E^{S}$ 2 +++3)2 C12 C C 11 . α 4 This candidate shows appropriate initial working to verify the equation, but misses out on the final mark, as they do not state what they have shown.

			Total	8		Parametric Equations
Ę	5	а	<i>x</i> is not defined for this value	E1 (AO 2.4) [1]		
		b	$\cos 2\theta$ has max value 1 when $\theta = 0$ so max y is 2	E1 (AO 2.4) [1]	Or using $\frac{dy}{d\theta} = 0$ correctly	
					Relevant use of $\cos 2\theta = 2 \cos^2 \theta - 1$ Relevant use of $\sec 2\theta = 1 + \tan^2 \theta$	
			$y = 2\cos^2\theta$	M1 (AO 2.2a)	AG Successful completion	At any stage
		С	$1 + x^{2} = \sec^{2}\theta$ $1 + x^{2} = \frac{2}{y} \Longrightarrow y = \frac{2}{1 + x^{2}}$ So	M1 (AO 1.1a)		At any stage
				E1 (AO 1.1) [3]		With use of $\sec \theta = \frac{1}{\cos \theta}$

	$8\cos^2\theta + 2B\sin^2 = A$	A1		Parametric Equations
	so $B = 4$ and $A = 8$, giving $y = \frac{8}{x^2 + 4}$	[3]		
c	$\frac{8}{x^2 + 4} > 0 \qquad \text{for all } x$	M1(AO 2.1) A1(AO 2.3)	or $2\sin^2\theta \ge 0$ and when $2\sin^2\theta = 0$, <i>x</i> is undefined	If zero scored, SC1 for $x^2 + 4$ is never negative oe
	So Ali is correct [because $y > 0$ for all x]	[2]		
	Total	7		