Questions

Q1.

A curve C has parametric equations

$$x=2t-1, \quad y=4t-7+\frac{3}{t}, \quad t\neq 0$$

Show that the Cartesian equation of the curve C can be written in the form

$$y=\frac{2x^2+ax+b}{x+1}, \qquad x\neq -1$$

where *a* and *b* are integers to be found.

(3)

(Total for question = 3 marks)

Q2.

A curve *C* has parametric equations

$$x = 3 + 2 \sin t$$
, $y = 4 + 2 \cos 2t$, $0 \le t < 2\pi$

(a) Show that all points on C satisfy $y = 6 - (x - 3)^2$

(2)

- (b) (i) Sketch the curve C.
 - (ii) Explain briefly why C does not include all points of $y = 6 (x 3)^2$, $x \in \mathbb{R}$

(3)

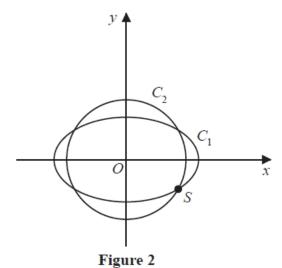
The line with equation x + y = k, where k is a constant, intersects C at two distinct points.

(c) State the range of values of *k*, writing your answer in set notation.

(5)

(Total for question = 10 marks)

Q3.



The curve C_1 with parametric equations

$$x = 10\cos t$$
, $y = 4\sqrt{2}\sin t$, $0 \leqslant t < 2\pi$

meets the circle C_2 with equation

$$x^2 + y^2 = 66$$

at four distinct points as shown in Figure 2.

Given that one of these points, S, lies in the 4^{th} quadrant, find the Cartesian coordinates of S.

(Total for question = 6 marks)

Q4.

A curve C has parametric equations

$$x = \frac{t^2 + 5}{t^2 + 1} \qquad \qquad y = \frac{4t}{t^2 + 1} \qquad \qquad t \in \mathbb{R}$$

Show that all points on C satisfy

$$(x-3)^2 + y^2 = 4$$

(Total for question = 3 marks)

(3)

(3)

Q5.

The curve C has parametric equations

$$x = \sin 2\theta$$
 $y = \csc^3 \theta$ $0 < \theta < \frac{\pi}{2}$

- (a) Find an expression for $\frac{d}{dx}$ in terms of θ

(b) Hence find the exact value of the gradient of the tangent to C at the point where y = 8

(Total for question = 6 marks)

Q6.

The curve *C* has parametric equations

$$x = 2\cos t$$
, $y = \sqrt{3}\cos 2t$, $0 \le t \le \pi$

(a) Find an expression for $\frac{dy}{dx}$ in terms of t.

(2)

The point *P* lies on *C* where $t = \frac{2\pi}{3}$

The line I is the normal to C at P.

(b) Show that an equation for I is

$$2x - 2\sqrt{3}y - 1 = 0$$

(5)

The line I intersects the curve C again at the point Q.

(c) Find the exact coordinates of Q.

You must show clearly how you obtained your answers.

(6)

(Total for question = 13 marks)

Mark Scheme

Q1.

Question	Scheme		AOs
	Attempts to substitute = $\frac{x+1}{2}$ into $y \Rightarrow y = 4\left(\frac{x+1}{2}\right) - 7 + \frac{6}{(x+1)}$		2.1
	Attempts to write as a single fraction $y = \frac{(2x-5)(x+1)+6}{(x+1)}$		2.1
	$y = \frac{2x^2 - 3x + 1}{x + 1} \qquad a = -3, b = 1$	A1	1.1b
(3 m		narks)	

Notes:

Score for an attempt at substituting $t = \frac{x+1}{2}$ or equivalent into $y = 4t-7+\frac{3}{t}$ M1:

Award this for an attempt at a single fraction with a correct common denominator. M1:

Their $4\left(\frac{x+1}{2}\right) - 7$ term may be simplified first

A1: Correct answer only $y = \frac{2x^2 - 3x + 1}{x + 1}$ a = -3, b = 1

Q2.

Question	Scheme	Marks	AOs
(a)	Attempts to use $\cos 2t = 1 - 2\sin^2 t \Rightarrow \frac{y - 4}{2} = 1 - 2\left(\frac{x - 3}{2}\right)^2$	M1	2.1
	$\Rightarrow y - 4 = 2 - 4 \times \frac{\left(x - 3\right)^2}{4} \Rightarrow y = 6 - \left(x - 3\right)^2 *$	A1*	1.1b
		(2)	
(b)	y-s shaped	M1	1.1b
	(3.6) parabola Fully correct with	A1	1.1b
	'ends' at (1,2) & (5,2)	В1	2.4
	Suitable reason: Eg states as $x = 3 + 2\sin t$, $1 \le x \le 5$	(2)	
		(3)	

(c)	Either finds the lower value for $k = 7$		
	or deduces that $k < \frac{37}{4}$	B1	2.2a
	Finds where $x + y = k$ meets $y = 6 - (x - 3)^2$ $\Rightarrow k - x = 6 - (x - 3)^2$ and proceeds to 3TQ in x or y	M1	3.1a
	Correct 3TQ in x $x^2 - 7x + (k+3) = 0$ Or y $y^2 + (7-2k)y + (k^2 - 6k + 3) = 0$	A1	1.1b
	Uses $b^2 - 4ac = 0 \Rightarrow 49 - 4 \times 1 \times (k+3) = 0 \Rightarrow k = \left(\frac{37}{4}\right)$ or $(7 - 2k)^2 - 4 \times 1 \times (k^2 - 6k + 3) = 0 \Rightarrow k = \left(\frac{37}{4}\right)$	M1	2.1
	Range of values for $k = \left\{ k : 7 \leqslant k < \frac{37}{4} \right\}$	A1	2.5
		(5)	
		1	(10 marks)

(a)

M1: Uses $\cos 2t = 1 - 2\sin^2 t$ in an attempt to eliminate t

A1*: Proceeds to $y = 6 - (x - 3)^2$ without any errors

Allow a proof where they start with $y = 6 - (x - 3)^2$ and substitute the parametric coordinates. M1 is scored

for a correct $\cos 2t = 1 - 2\sin^2 t$ but A1 is only scored when both sides are seen to be the same AND a comment is made, hence proven, or similar.

(b)

M1: For sketching a O parabola with a maximum in quadrant one. It does not need to be symmetrical

A1: For sketching a \bigcap parabola with a maximum in quadrant one and with end coordinates of (1,2) and (5,2)

B1: Any suitable explanation as to why C does not include all points of $y = 6 - (x - 3)^2$, $x \in \mathbb{R}$ This should include a reference to the limits on sin or cos with a link to a restriction on x or y. For example

'As $-1 \le \sin t \le 1$ then $1 \le x \le 5$ ' Condone in words 'x lies between 1 and 5' and strict inequalities

'As $\sin t \le 1$ then $x \le 5$ ' Condone in words 'x is less than 5'

'As $-1 \le \cos(2t) \le 1$ then $2 \le y \le 6$ 'Condone in words 'y lies between 2 and 6'

Withhold if the statement is incorrect Eg "because the domain is $2 \le x \le 5$ "

Do not allow a statement on the top limit of y as this is the same for both curves

(c)

B1: Deduces either

- the correct that the lower value of k = 7 This can be found by substituting into (5,2) $x + y = k \Rightarrow k = 7$ or substituting x = 5 into $x^2 - 7x + (k+3) = 0 \Rightarrow 25 - 35 + k + 3 = 0$ $\Rightarrow k = 7$
- or deduces that $k < \frac{37}{4}$ This may be awarded from later work

M1: For an attempt at the upper value for k.

Finds where x + y = k meets $y = 6 - (x - 3)^2$ once by using an appropriate method.

Eg. Sets $k-x=6-(x-3)^2$ and proceeds to a 3TQ

A1: Correct 3TQ $x^2 - 7x + (k+3) = 0$ The = 0 may be implied by subsequent work

M1: Uses the "discriminant" condition. Accept use of $b^2 = 4ac$ oe or $b^2 ... 4ac$ where ... is any inequality

leading to a critical value for k. Eg. one root $\Rightarrow 49 - 4 \times 1 \times (k+3) = 0 \Rightarrow k = \frac{37}{4}$

A1: Range of values for $k = \left\{k : 7 \le k < \frac{37}{4}\right\}$ Accept $k \in \left[7, \frac{37}{4}\right]$ or exact equivalent

ALT	As above	B1	2.2a
	Finds where $x + y = k$ meets $y = 6 - (x - 3)^2$ once by using an appropriate method. Eg. Sets gradient of $y = 6 - (x - 3)^2$ equal to -1	M1	3.1a
	$-2x+6=-1 \Rightarrow x=3.5$	A1	1.1b
	Finds point of intersection and uses this to find upper value of k . $y = 6 - (3.5 - 3)^2 = 5.75$ Hence using $k = 3.5 + 5.75 = 9.25$	M1	2.1
	Range of values for $k = \{k : 7 \le k < 9.25\}$	A1	2.5

Q3.

Part	Working or answer an examiner might expect to see	Mark	Notes	
	$(10\cos t)^2 + (4\sqrt{2}\sin t)^2 = 66$	M1	This mark is given for combining the two equations to show where the curve and circle meet	
	$100 (\cos t)^2 + 32(1 - \cos t)^2 = 66$	M1	This mark is given for forming an equation in cos t only	
	$68\cos^2 t = 34$	A1	This mark is given for simplifying to find an equation in terms of $\cos t$	
	$\cos t = \pm \frac{1}{\sqrt{2}} \implies t = \frac{\pi}{4}$	M1	This mark is given for finding a value for t	
	$x = 10 \times \frac{1}{\sqrt{2}}$ $y = 4\sqrt{2} \times -\sin\frac{\pi}{4} = 4\sqrt{2} \times -\frac{1}{\sqrt{2}}$	M1	This mark is given for a method to substitute back into the original equations to find value for x and y	
	$S = (5\sqrt{2}, -4)$	A1	This mark is given for the correct coordinates of S	
	(Total 6 marks)			

Q4.

Question	Scheme	Marks	AOs
	$(x-3)^2 + y^2 = \left(\frac{t^2 + 5}{t^2 + 1} - 3\right)^2 + \left(\frac{4t}{t^2 + 1}\right)^2$	M1	3.1a
	$=\frac{\left(2-2t^2\right)^2+16t^2}{\left(t^2+1\right)^2}=\frac{4+8t^2+4t^4}{\left(t^2+1\right)^2}$	dM1	1.1b
	$\frac{4(t^4 + 2t^2 + 1)}{(t^2 + 1)^2} = \frac{4(t^2 + 1)^2}{(t^2 + 1)^2} = 4*$	A1*	2.1
		(3)	

M1: Attempts to substitute the given parametric forms into the Cartesian equation or the lhs of the Cartesian equation. There may have been an (incorrect) attempt to multiply out the $(x-3)^2$ term. dM1: Attempts to combine (at least the lhs) using correct processing into a single fraction, multiplies out and collects terms on the numerator.

A1*: Fully correct proof showing all key steps

Question	Scheme	Marks	AOs	
Alt	$x = \frac{t^2 + 5}{t^2 + 1} \Rightarrow xt^2 + x = t^2 + 5 \Rightarrow t^2 = \frac{5 - x}{x - 1}$ $y = \frac{4t}{t^2 + 1} \Rightarrow y^2 = \frac{16t^2}{\left(t^2 + 1\right)^2} = \frac{16\left(\frac{5 - x}{x - 1}\right)}{\left(\frac{5 - x}{x - 1} + 1\right)^2}$	M1	3.1a	
	$y^{2} = \frac{16\left(\frac{5-x}{x-1}\right)}{\left(\frac{5-x}{x-1}+1\right)^{2}} = 16\left(\frac{5-x}{x-1}\right) \times \left(\frac{(x-1)}{5-x+x-1}\right)^{2} \Rightarrow y^{2} = (5-x)(x-1)$	dM1	1.1b	
	$y^{2} = (5-x)(x-1) \Rightarrow y^{2} = 6x - x^{2} - 5$ $\Rightarrow y^{2} = 4 - (x-3)^{2} \text{ or other intermediate step}$ $\Rightarrow (x-3)^{2} + y^{2} = 4*$	A1*	2.1	
		(3)		
	(3 marks)			
	Notes			

M1: Adopts a correct strategy for eliminating t to obtain an equation in terms of x and y only. See scheme. Other methods exist which also lead to an appropriate equation. E.g using $t = \frac{y}{x-1}$

dM1: Uses correct processing to eliminate the fractions and start to simplify

A1*: Fully correct proof showing all key steps

Q5.

Question	Scheme	Marks	AOs
(a)	$y = \csc^3 \theta \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}\theta} = -3\csc^2 \theta \csc \theta \cot \theta$	B1	1.1b
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}\theta} \div \frac{\mathrm{d}x}{\mathrm{d}\theta}$	M1	1.1b
	$\frac{\mathrm{d}x}{\mathrm{d}x} = \frac{\mathrm{d}\theta}{2\cos 2\theta}$	A1	1.1b
		(3)	
(b)	$y = 8 \Rightarrow \csc^3 \theta = 8 \Rightarrow \sin^3 \theta = \frac{1}{8} \Rightarrow \sin \theta = \frac{1}{2}$	M1	3.1a
	$\theta = \frac{\pi}{6} \Rightarrow \frac{dy}{dx} = \frac{-3\csc^3\left(\frac{\pi}{6}\right)\cot\left(\frac{\pi}{6}\right)}{2\cos\left(\frac{2\pi}{6}\right)} = \dots$		
	$\sin \theta = \frac{1}{2} \Rightarrow \frac{dy}{dx} = \frac{\frac{-3}{\sin^3 \theta} \times \frac{\cos \theta}{\sin \theta}}{2(1 - 2\sin^2 \theta)} = \frac{\frac{-3 \times 8 \times \frac{\sqrt{3}}{2}}{1/2}}{2(1 - 2 \times \frac{1}{4})}$ $= -24\sqrt{3}$	M1	2.1
	$=-24\sqrt{3}$	A1	2.2a
		(3)	
	(6 mai		

Notes

B1: Correct expression for $\frac{dy}{d\theta}$ seen or implied in any form e.g. $\frac{-3\cos\theta}{\sin^4\theta}$

M1: Obtains $\frac{dx}{d\theta} = k \cos 2\theta$ or $\alpha \cos^2 \theta + \beta \sin^2 \theta$ (from product rule on $\sin \theta \cos \theta$) and attempts $\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$

A1: Correct expression in any form.

May see e.g.
$$\frac{-3\cos\theta}{2\sin^4\theta\cos2\theta}$$
, $-\frac{3}{4\sin^4\theta\cos\theta-2\sin^3\theta\tan\theta}$

M1: Recognises the need to find the value of $\sin \theta$ or θ when y = 8 and uses the y parameter to establish its value. This should be correct work leading to $\sin \theta = \frac{1}{2}$ or e.g. $\theta = \frac{\pi}{6}$ or 30°.

M1: Uses their value of $\sin \theta$ or θ in their $\frac{dy}{dx}$ from part (a) (working in exact form) in an attempt

to obtain an exact value for $\frac{dy}{dx}$. May be implied by a correct exact answer.

If no working is shown but an exact answer is given you may need to check that this follows their $\frac{dy}{dx}$

A1: Deduces the correct gradient

Q6.

Question	Scheme	Marks	AOs
(a)	Attempts $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dt}{dt}}$	M1	1.1b
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sqrt{3}\sin 2t}{\sin t} \left(=2\sqrt{3}\cos t\right)$	A1	1.1b
		(2)	
(b)	Substitutes $t = \frac{2\pi}{3} \text{ in } \frac{dy}{dx} = \frac{\sqrt{3} \sin 2t}{\sin t} = (-\sqrt{3})$	M1	2.1
	Uses gradient of normal = $-\frac{1}{dy/dx} = \left(\frac{1}{\sqrt{3}}\right)$	M1	2.1
	Coordinates of $P = \left(-1, -\frac{\sqrt{3}}{2}\right)$	B1	1.1b
	Correct form of normal $y + \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}}(x+1)$	M1	2.1
	Completes proof $\Rightarrow 2x - 2\sqrt{3}y - 1 = 0$ *	A1*	1.1b
		(5)	
(c)	Substitutes $x = 2\cos t$ and $y = \sqrt{3}\cos 2t$ into $2x - 2\sqrt{3}y - 1 = 0$	M1	3.1a
	Uses the identity $\cos 2t = 2\cos^2 t - 1$ to produce a quadratic in $\cos t$	M1	3.1a
	$\Rightarrow 12\cos^2 t - 4\cos t - 5 = 0$	A1	1.1b
	Finds $\cos t = \frac{5}{6}, \frac{1}{2}$	M1	2.4
	Substitutes their $\cos t = \frac{5}{6}$ into $x = 2\cos t$, $y = \sqrt{3}\cos 2t$,	M1	1.1b
	$Q = \left(\frac{5}{3}, \frac{7}{18}\sqrt{3}\right)$	A1	1.1b
		(6)	
		(13 n	narks)

Notes:

(a)

M1: Attempts $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ and achieves a form $k \frac{\sin 2t}{\sin t}$ Alternatively candidates may apply the

double angle identity for $\cos 2t$ and achieve a form $k \frac{\sin t \cos t}{\sin t}$

A1: Scored for a correct answer, either $\frac{\sqrt{3}\sin 2t}{\sin t}$ or $2\sqrt{3}\cos t$

(b)

M1: For substituting $t = \frac{2\pi}{3}$ in their $\frac{dy}{dx}$ which must be in terms of t

M1: Uses the gradient of the normal is the negative reciprocal of the value of $\frac{dy}{dx}$. This may be seen in the equation of l.

B1: States or uses (in their tangent or normal) that $P = \left(-1, -\frac{\sqrt{3}}{2}\right)$

M1: Uses their numerical value of $-1/\frac{dy}{dx}$ with their $\left(-1, -\frac{\sqrt{3}}{2}\right)$ to form an equation of the normal at P

A1*: This is a proof and all aspects need to be correct. Correct answer only $2x - 2\sqrt{3}y - 1 = 0$

(c)

M1: For substituting $x = 2\cos t$ and $y = \sqrt{3}\cos 2t$ into $2x - 2\sqrt{3}y - 1 = 0$ to produce an equation in t. Alternatively candidates could use $\cos 2t = 2\cos^2 t - 1$ to set up an equation of the form $y = Ax^2 + B$.

M1: Uses the identity $\cos 2t = 2\cos^2 t - 1$ to produce a quadratic equation in $\cos t$ In the alternative method it is for combining their $y = Ax^2 + B$ with $2x - 2\sqrt{3}y - 1 = 0$ to get an equation in just one variable

A1: For the correct quadratic equation $12\cos^2 t - 4\cos t - 5 = 0$ Alternatively the equations in x and y are $3x^2 - 2x - 5 = 0$ $12\sqrt{3}y^2 + 4y - 7\sqrt{3} = 0$

M1: Solves the quadratic equation in $\cos t$ (or x or y) and rejects the value corresponding to P.

M1: Substitutes their $\cos t = \frac{5}{6}$ or their $t = \arccos\left(\frac{5}{6}\right)$ in $x = 2\cos t$ and $y = \sqrt{3}\cos 2t$

If a value of x or y has been found it is for finding the other coordinate.

A1: $Q = \left(\frac{5}{3}, \frac{7}{18}\sqrt{3}\right)$. Allow $x = \frac{5}{3}, y = \frac{7}{18}\sqrt{3}$ but do not allow decimal equivalents.