- 1. A circle with centre C has equation $x^2 + y^2 2x + 10y 19 = 0$.
 - i. Find the coordinates of C and the radius of the circle.

[3]

ii. Verify that the point (7, -2) lies on the circumference of the circle.

[1]

iii. Find the equation of the tangent to the circle at the point (7, -2), giving your answer in the form ax + by + c = 0, where a, b and c are integers.

[5]

- 2. A circle C has equation $x^2 + y^2 + 8y 24 = 0$.
 - i. Find the centre and radius of the circle.
 - ii. The point A(2, 2) lies on the circumference of C. Given that AB is a diameter of the circle, find the coordinates of B.

(ii) The point Phas coordinates (6, k) and lies inside the circle. Find the set of possible values

3. A circle with centre C has equation $(x-2)^2 + (y+5)^2 = 25$.

[3]

(i) Show that no part of the circle lies above the x-axis.

[5]

(iii) Prove that the line 2y = x does not meet the circle.

of *k*.

[4]

- 4. A circle with centre C has equation $x^2 + y^2 10x + 4y + 4 = 0$.
 - i. Find the coordinates of *C* and the radius of the circle.

[3]

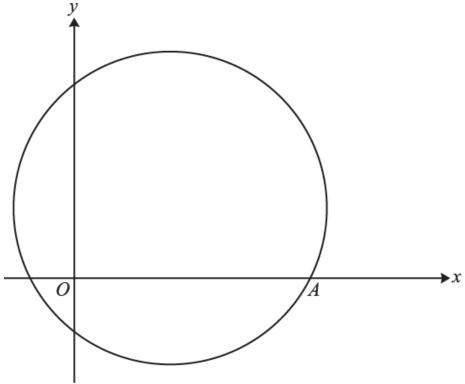
ii. Show that the tangent to the circle at the point P(8, 2) has equation 3x + 4y = 32.

[5]

iii. The circle meets the *y*-axis at *Q* and the tangent meets the *y*-axis at *R*. Find the area of triangle *PQR*.

[4]

5. Y



The diagram shows the circle with equation $x^2 + y^2 - 8x - 6y - 20 = 0$.

i. Find the centre and radius of the circle.

The circle crosses the positive x-axis at the point A.

- ii. Find the equation of the tangent to the circle at \boldsymbol{A} .
- iii. A second tangent to the circle is parallel to the tangent at A. Find the equation of this second tangent.
- iv. Another circle has centre at the origin O and radius r. This circle lies wholly inside the first circle. Find the set of possible values of r.

[2]

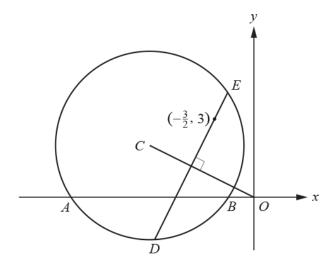
[3]

[6]

[3]

- 6. Points A and B have coordinates (3, 0) and (9, 8) respectively. The line AB is a diameter of a circle.
 - (a) Find the coordinates of the centre of the circle. [2]
 - (b) Find the equation of the tangent to the circle at the point B. [3]

7.



A circle with centre C has equation $x^2 + y^2 + 8x - 4y + 7 = 0$, as shown in the diagram. The circle meets the x-axis at A and B.

- (a) Find
 - the coordinates of C,
 - the radius of the circle.
- (b) Find the coordinates of the points A and B. [2]

The chord *DE* passes through the point $\left(-\frac{3}{2},3\right)$ and is perpendicular to *OC*, where *O* is the origin.

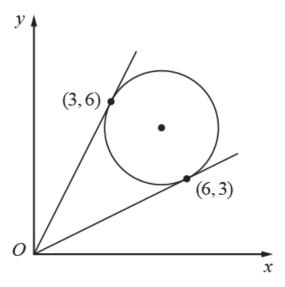
- (c) Find the coordinates of the points D and E.
- (d) Hence find the area of the quadrilateral *BEAD*. [2]

[3]

[7]

8. In this question you must show detailed reasoning.

A circle touches the lines $y = \frac{1}{2}x$ and y = 2x at (6, 3) and (3, 6) respectively.



Find the equation of the circle.

- [7]
- The circle $x^2 + y^2 8x + 2y = 0$ passes through the origin O. Line OA is a diameter to this 9. circle.
 - Find the equation of the line OA, giving your answer in the form ax + by = 0, where a [5] and *b* are integers.
 - The tangent to the circle at point A meets the x-axis at the point B. Find the area of [6] triangle OAB.
- 10. A circle with equation $x^2 + y^2 + 6x - 4y = k$ has a radius of 4.

 - (a) Find the coordinates of the centre of the circle. [2] **(b)** Find the value of the constant *k*. [2]

- 11. The equation of a circle is $x^2 + y^2 + 6x 2y 10 = 0$.
 - (a) Find the centre and radius of the circle.

[3]

- (b) Find the coordinates of any points where the line y = 2x 3 meets the circle $x^2 + y^2 + [4] 6x 2y 10 = 0$.
- (c) State what can be deduced from the answer to part (b) about the line y = 2x 3 and the circle

$$x^2 + y^2 + 6x - 2y - 10 = 0.$$
 [1]

12. A circle with centre C has equation $x^2 + y^2 + 8x - 2y - 7 = 0$.

Find

- (a) the coordinates of C, [2]
- (b) the radius of the circle. [1]
- 13. In this question you must show detailed reasoning.

The lines
$$y=\frac{1}{2}x$$
 and $y=-\frac{1}{2}x$ are tangents to a circle at (2, 1) and (-2, 1) respectively. Find the equation of the circle in the form $x^2+y^2+ax+by+c=0$, where a , b and c are constants.

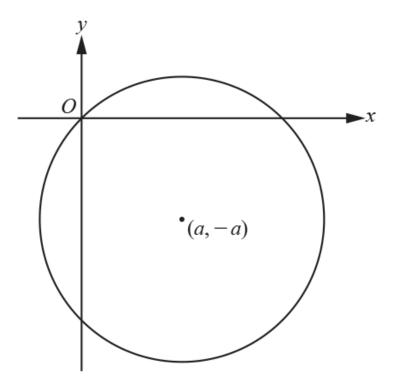
- A line has equation y = 2x and a circle has equation $x^2 + y^2 + 2x 16y + 56 = 0$.
 - (a) Show that the line does not meet the circle. [3]
 - (b) (i) Find the equation of the line through the centre of the circle that is perpendicular to the line y = 2x.
 - (ii) Hence find the shortest distance between the line y = 2x and the circle, giving your answer in an exact form.

[4]

[6]

Circles

15.



The diagram shows a circle with centre (a, -a) that passes through the origin.

(a) Write down an equation for the circle in terms of a.

[2]

(b) Given that the point (1, -5) lies on the circle, find the exact area of the circle.

[3]

END OF QUESTION paper

Mark scheme

Ques	stion	Answer/Indicative content	Marks	Part marks and guidance	
1	i	Centre (1, -5)	B1	Correct centre	
	i	$(x-1)^2 + (y+5)^2 - 19 - 1 - 25 = 0$ $(x-1)^2 + (y+5)^2 = 45$	M1	Correct method to find ℓ^2	$r^2 = (\pm 5)^2 + (\pm 1)^2 + 19$ for the M mark
				Correct radius. Do not allow if wrong centre used in calculation of radius.	
				Examiner's Comments	
	i	Radius = $\sqrt{45}$	A1	This standard piece of bookwork was generally done very well, with around three-quarters of candidates scoring all three marks. Only occasionally was the centre seen as (2, -10). The most common cause of errors was again dealing with negative numbers, particularly when squaring to find the radius, or not subtracting appropriately after completing the square.	A0 if $\pm \sqrt{45}$
				Substitution of coordinates into equation of circle in any form or use of Pythagoras' theorem to calculate the distance of $(7, -2)$ from C	
	ii	$7^2 + (-2)^2 - 14 - 20 - 19$ $= 0$	B1	Examiner's Comments	No follow through for this part as AG. Must be consistent – do not allow finding the distance as $\sqrt{45}$ if no / wrong
				This was managed well by most candidates, with substitution of the point into the original equation generally a more successful approach than using Pythagoras' theorem.	radius found in 9(i).
	iii	gradient of radius = $\frac{-5 - (-2)}{1 - 7}$ or $\frac{-2 - (-5)}{7 - 1}$	M1	$\frac{y_2-y_1}{x_2-x_1}$ with their C	Follow through from 9(f) until final mark.
				(3/4 correct)	

	iii	$=\frac{1}{2}$	A1√	Follow through from their C allow unsimplified single fraction e.g. $\frac{-3}{-6}$	Circles If (-1,5) is used for C, then expect
	iii	gradient of tangent = -2	B1√	Follow through from their gradient, even if M0 scored. Allow $\frac{-1}{their\ fraction} B1$	Gradient of radius = $\frac{5 - (-2)}{-1 - 7} = -\frac{7}{8}$
	iii	y+2=-2(x-7)	M1	correct equation of straight line through (7, -2), any non-zero numerical gradient	$\frac{8}{7}$ Gradient of tangent = $\frac{8}{7}$
				oe 3 term equation in correct form i.e. $k(2x + y - 12) = 0$ where k is an integer cao	
	iii	2x + y - 12 = 0	A1	Examiner's Comments A large number of candidates secured full marks on this question and almost all managed to secure partial credit. Some candidates $\frac{-3}{-6}:0 = \frac{1}{2}$ The incorrect simplification of $\frac{3}{6}:0 = \frac{1}{3}$ was also common. The majority remembered to find the negative reciprocal of their gradient and then substituted this correctly to find an equation of a straight line. Some candidates still miss the detail of the question and do not give the correct answer in the required form, needlessly losing the final mark. Another not uncommon error was to attempt to differentiate implicitly when candidates clearly had either not yet met this technique or did not understand the process; successful solutions using this approach were extremely rare.	Alternative markscheme for implicit differentiation: $2y\frac{dy}{dx}$ M1 Attempt at implicit diff as evidenced by term $2x+2y\frac{dy}{dx}-2+10\frac{dy}{dx}=0$ A1 Substitution of $(7,-2)$ to obtain gradient of tangent = -2 Then M1 A1 as main scheme
		Total	9		
2	i	Centre (0, -4)	B1		
	i	$x^2 + (y+4)^2 - 16 - 24 = 0$	M1	$(y \pm 4)^2 - 4^2$ seen (or implied by correct answer)	Or attempt at $r^2 = r^2 + g^2 - c$
	i	Radius = $\sqrt{40}$	A1	Do not allow A mark from $(y-4)^2$ Examiner's Comments	A0 for $\pm \sqrt{40}$

					Circles
				Over two-thirds of candidates secured all three marks interpreting the given equation of a circle correctly. Marks were lost mainly due to sign errors, both in attempting to find the centre and in attempts to complete the square.	
	ii	(-2, -10)	B1FT	FT through centre given in (1)	i.e. (their $2x - 2$, their $2y - 2$)
				FT through centre given in (1)	
				Examiner's Comments	
	ii		B1FT	Candidates who drew a diagram usually recognised that the coordinates of B could be found by simple addition or subtraction and were then usually successful in scoring both marks, especially as there was a follow-through from part (i). Those who tried to apply standard techniques involving Pythagoras' theorem and resulting quadratics were very rarely successful in finding either value.	Apply same scheme if equation of diameter found and attempt to solve simultaneously; no marks until a correct value of x/y found.
	ii	a. If the formula is quoted incorrectly then M0. b. If the formula is quoted correctly then one sign slip is permitted. Substituting the wrong numerical value for a or b or c scores M0	c.		
		Total	5		
3	i	y coordinate of the centre is −5	B1	Correct y value	Alt
	i	Radius = 5	B1	Correct radius	Shows only meets <i>x</i> axis at one point B1
				Correct explanation based on the above — allow clear diagram www	
	i	Centre is five units below x axis and radius is five, so just touches the x -axis	B1	Examiner's Comments	Correct y value for the centre B1 Correct explanation B1 www
				The simplest, and most common, approach to show that the circle did not go above the x axis was to identify the centre and radius from	

© OCR 2017. Page 9 of 29 PhysicsAndMathsTutor.com

			the equation and state/show on a diagram that the circle just touched the axis at a single point. The majority of candidates showed clear solutions to this effect. Some, however, tested just a single point (usually $y=1$) and showed this was not a point on the circle, which was of course insufficient.	Circles
ii	$CP^2 = (6-2)^2 + (k+5)^2$ $CP^2 < 25 \Rightarrow 16 + k^2 + 10k + 25 < 25$	M1	Attempt to find <i>CP</i> or <i>CP</i> ²	Alternative Puts $x = 6$ to into equation of circle M1
ii	$k^2 + 10k + 16 < 0$	A1	Correct three term quadratic expression*	Correct three term quadratic equation*, could be in terms of y A1
ii	(k+2)(k+8) < 0	A1	k = -2 and $k = -8$ found	k = -2 and $k = -8$ found (allow y) A1
ii	-8 < <i>k</i> < -2	M1	Chooses "inside region" for their roots of their quadratic	Then as main scheme
			Must be strict inequalities for the A mark	
			* Or $(k + 5)^2 < 9$	
			Examiner's Comments	* Or $(k + 5)^2 = 9$
ii	i	A1	Most candidates took the correct approach to this, substituting $x = 6$ and then solving the quadratic and finding the values of k that corresponded to the points on the circumference. A large number of candidates then stopped and failed to identify the correct range of values being any value between these. Those who carried on were usually correct, but it was fairly common to not give the answer as the strict inequalities required for the point to be inside the circle. There were some neat alternative solutions using Pythagoras' theorem to find the values of k from a good sketch.	SC Trial and improvement B2 if final answer correct (B1 if inequalities are not strict) Can only get 5/5 if fully explained
iii	$(2y-2)^{2} + (y+5)^{2} = 25$ $5y^{2} + 2y + 4 = 0$ $b^{2} - 4ac = 4 - 4 \times 5 \times 4$	M1*	Attempts to eliminate x or y from equation of circle	If <i>y</i> eliminated: $5x^2 + 4x + 16 = 0$

© OCR 2017. Page 10 of 29 PhysicsAndMathsTutor.com

		= -76			Circles	
		< 0, so line and circle do not meet				
	iii		A1	Correct three term quadratic obtained	$b^2 - 4ac = 16 - 4 \times 5 \times 16$ $= -304$	
	iii		M1dep*	Correct method to establish quadratic has no roots e.g. considers value of \mathcal{B}^2 – $4ac$, tries to find roots from quadratic formula	No marks for purely graphical attempts	
				Correct clear conclusion www AG		
				Examiner's Comments		
	iii		A1	There were a large number of fully correct solutions to the request to prove that the line and circle do not meet. Most performed the easier substitution for x , but $(2y)^2 = 2y^2$ was a fairly common error. Many were able to use the discriminant, or the quadratic formula, to explain their reasoning clearly. Only a few claimed that the line and circle did not meet because the quadratic could not be factorised. Some of the weaker candidates again resorted to testing a single point (sometimes the centre) or drawing a poor diagram.		
		Total	12			
4	i	<i>C</i> = (5, -2)	B1	Correct centre		
	i	$(x-5)^2 + (y+2)^2 - 25 = 0$	M1	$(x \pm 5)^2 - 5^2$ and $(y \pm 2)^2 - 2^2$ seen (or implied by correct answer)	Or attempt at $r^2 = f + g^2 - c$	
				Correct radius – do not allow A mark from $(x + 5)^2$ and / or $(y - 2)^2$		
	i	Radius = 5	A1	Examiner's Comments	$\pm 5 \text{ or } \sqrt{25} \text{ A0.}$	
				Apart from the usual sign error, most candidates were able to identify the centre and calculate the radius of the circle with little apparently difficulty.		

Gradient $PC = \frac{22}{8 - 5} = \frac{4}{3}$	M1	Attempt to find gradient of radius (3/4 correct)	Circles See also alternative methods on next page
i	A1		
Gradient of tangent = $-\frac{3}{4}$	B1ft	$\frac{-1}{\text{their gradient}}$ processed	
$y - 2 = -\frac{3}{4}(x - 8)$	M1	Equation of straight line through P, using their perpendicular gradient (not from rearrangement)	Do not allow use of gradient of radius instead of tangent
Gradient of radius = $\frac{22}{8-5} = \frac{4}{3}$ M1A1 Attempts to rearrange equation of line to find gradient of line = $-\frac{3}{4}$ and compares with gradient of radius M1 Multiply gradients to get -1 B1 Check (8, 2) lies on line B1	A1	Rearrange to required form www AG Substitute for x/y or attempt to get an equation in 1 variable only M1 $k(x^2 - 16x + 64) = 0$ or $k(y^2 - 4y + 4) = 0$ A1 Correct method to solve quadratic — see appendix 1 M1 $x = 8$, $y = 2$ found A1 States one root implies tangent B1 Examiner's Comments Unsuccessful attempts at implicit differentiation notwithstanding, most candidates were able to present a clear accurate solution to this part of the question. The expected approach of finding the gradient of the radius, its negative reciprocal and then the equation of the line through (8, 2) was performed very well. Some candidates merely rearranged the given equation to find its gradient and re-substituted; this gained no credit.	Ignore order of terms
ii $Q = (0, -2)$	B1	Q found correctly	For the M mark, allow splitting into two triangles $\frac{1}{2} \times 6 \times 8 + \frac{1}{2} \times 4 \times 8$
ii $R = (0, 8)$	B1	R found correctly	
Area = $\frac{1}{2} \times (82) \times 8$	M1	Attempt to find area of triangle with their Q , R and height 8 i.e. $\frac{1}{2} \times (y_R - y_Q) \times 8$	If using PQ as base then expect to see $\frac{1}{2} \times \sqrt{80} \times \sqrt{80}$ www

				Examiner's Comments	Circles
	iii	40	A1	Most candidates were able to find both points on the <i>y</i> -axis and the best solutions to this included a sketch diagram to aid candidates on their way. Some chose to find the lengths of all the sides of the triangle and multiply together sides that were not perpendicular before halving. Although full marks to this part were comparatively rare, it was noticeable that some lower attaining candidates who did use a good sketch were able to outscore many of the higher attaining students on this particular part.	
		Total	12		
5	i	Centre of circle (4, 3)	B1	Correct centre	
	i	$(x-4)^2 - 16 + (y-3)^2 - 9 - 20 = 0$	M1	$(x \pm 4)^2 - 4^2$ and $(y \pm 3)^2 - 3^2$ seen (or implied by correct answer)	Or $r^2 = 4^2 + 3^2 + 20$ soi
	i	$r^2 = 45$		$\sqrt{45}$ or better www	ISW after $\sqrt{45}$
	i	$r=\sqrt{45}$	A1		Examiner's Comments This proved to be a very successfully answered question, with around nine in ten candidates securing all three marks.
	ii	At A, $y = 0$ so $x^2 - 8x - 20 = 0$ (x - 10)(x + 2) = 0	M1	Valid method to find A e.g. put $y = 0$ and attempt to solve quadratic (allow slips) or Pythagoras' theorem	Alterative for finding gradient: M1 Attempt at implicit $2yrac{dy}{dx}$ differentiation as evidenced by
	ii	A = (10, 0)	A1	Correct answer found	
	ii	$\frac{3-0}{4-10} = -\frac{1}{2}$ Gradient of radius = $\frac{3-0}{4-10}$	M1	Attempts to find gradient of radius (3 out of 4 terms correct for their centre, their A)	

ii	Gradient of tangent = 2	B1		$2x + 2y \frac{dy}{dx} - 8 - 6 \frac{dy}{dx} = 0$ and substitution of (10, 0) to obtain 2.
ii	y-0=2(x-10)	M1	Equation of line through their A , any non-zero gradient	
				Examiner's Comments
ii	<i>y</i> = 2 <i>x</i> - 20	A1	Correct answer in any three-term form	Just over half of candidates obtained full marks in this part, with errors appearing at all stages. Some put x rather than y equal to 0 when trying to find A and the alternative method of using Pythagoras' theorem often led to slips. There were a significant number of problems finding the gradient and errors such as $\frac{3}{6} = \frac{1}{3}$ were commonly seen.
iii	A' = (-2, 6)	B1	Finds the opposite end of the diameter	
iii	y - 6 = 2(x + 2)	M1	Line through their A' parallel to their line in (ii)	Not through centre of circle
iii	y = 2x + 10	A1	Correct answer in any three-term form	Examiner's Comments Many candidates did not realise that the point required for the parallel line was the opposite end of the diameter. Most did use the same gradient as in (ii), but some used the negative reciprocal. An interesting method sometimes seen was consideration of translation of the original line.
iv	$00 = \sqrt{3^2 + 4^2} = 5$ $(0 <) r < \sqrt{45 - 5}$	M1	Attempts to find the distance from O to their centre and subtract from their radius	ISW incorrect simplification
iv	$(0 <) r < \sqrt{45} - 5$	A1	Correct inequality, condone ≤	Examiner's Comments

				This proved very demanding, with many candidates unable to start; those who drew a diagram were generally more successful but less than a quarter of candidates secured both marks. Even amongst those who found the maximum length of the radius to be $\sqrt{45}-5_{\rm l}$ it was quite rare to see the correct inequality.
		Total	14	
6	а	$\left(\frac{3+9}{2},\frac{0+8}{2}\right)$	M1 (AO1.1a) A1 (AO1.1)	Correct working for either coordinate May be implied by $x = 6$ or $y = 4$
		(6,4)	[2]	
	b	$\frac{8-4}{9-6} = \frac{4}{3}$ Gradient of radius through B is $\frac{3}{9} = \frac{3}{4}$	M1 (AO1.1) M1 (AO1.1) A1	FT their gradient
		So equation of tangent is $y = -\frac{3}{4}x + \frac{59}{4}$ be	(AO2.2a) [3]	
		Total	5	
		Centre of circle is (-4, 2)	B1 (AO1.1)	Correct centre
7	а	$(x+4)^2 - 16 + (y-2)^2 - 4 + 7 = 0$ $r^2 = 13 \Longrightarrow r = \sqrt{13}$	M1 (AO1.1) A1 (AO1.1)	$(x \pm 4)^2 - 16 + (y \pm 2)^2 - 4 \text{ seen}$ OR $r^2 = 4^2 + 2^2 - 7$
		$r^2 = 13 \Longrightarrow r = \sqrt{13}$	[3]	

			T
			r = 3.61 or better www
b	$y=0 \Rightarrow x^2 + 8x + 7 = 0$	M1 (AO1.1a)	Substitute y = 0 and attempt to solve
		A1 (AO1.1)	
	A (-7, 0) and B (-1, 0)	[2]	BC
	m _ 1	M1	
	$m_{OC} = -\frac{1}{2}$	(AO3.1a)	Identify gradient of line OC
	Hence $m_{DE} = 2$	A1FT	
		(AO1.2)	Use of $m_1 m_2 = -1$ with their m_{OC}
	$y-3=2\left(x+\frac{3}{2}\right) \Longrightarrow y=2x+6$	M1 (AO1.1)	
С	$(x+4)^2 + (2x+4)^2 = 13$	M1 (AO3.1a)	Form equation of line <i>DE</i>
	$5x^2 + 24x + 19 = 0 \Rightarrow x = \dots$	M1 (AO1.1)	Substitute to get quadratic in one variable
	10	A1 (AO1.1)	Expand and attempt to solve their 3-term
	$x = -\frac{19}{5}, -1$	A1 (AO3.2a)	quadratic

				Circles
		<i>D</i> is $\left(-\frac{19}{5}, -\frac{8}{5}\right)$ and <i>E</i> is $(-1, 4)$	[7]	BC
	d	Area = $\frac{1}{2}(6)(4) + \frac{1}{2}(6)(\frac{8}{5})$ = $\frac{84}{5}$	M1 (AO1.1a) A1 (AO1.1) [2]	Area = $\frac{1}{2}$ (their $(7-1)$) (their $\left(4+\frac{8}{5}\right)$)
		Total	14	
		DR	B1(AO3.1a)	
		Grad of rad = -2 or $-\frac{1}{2}$	M1(AO1.1a)	
8		$y-3 = -2(x-6)$ or $y-6 = -\frac{1}{2}(x-3)$	M1(AO1.2)	Attempt equation of either radius
		$y = -2x + 15$ or $y = -\frac{1}{2}x + 7\frac{1}{2}$	M1(AO2.1)	or attempt
		Equation of line from \mathcal{O} to centre is $y = x$	A1(AO1.1) M1(AO1.1)	equation of other radius

		$x = -2x + 15$ or $x = -\frac{1}{2}x + 7\frac{1}{2}$	A1(AO1.1)	Solve their equation of radius with $y = x$	or equns of both radii	Circles
				ISW		
		$(x-5)^2 + (y-5)^2 = 5$ Total	7			
		$(x-4)^2 - 16 + (y+1)^2 - 1 = 0$ $(x-4)^2 + (y+1)^2 = 17$	M1	method to (y ±	. $(x \pm 4)^2$ and = 1) ² seen (or implied	
		Centre = (4, -1)	A1	circle M c	correct answer) can be implied by rect centre.	
9	i	$m = -\frac{1}{4}$	B1	centre soi. lead	te: Centre (- 4, 1) ds to prect" answer.	
		$y = -\frac{1}{4}x$	M1	Gradient of OA correct (could use OC or CA) [A = (8, -2) is not required for this part,	A0B0M1A0 Max 2/5	

				1	Circles
			but may be used]		Circles
	x + 4y = 0	A1	www Correct equation in required form	Alternative for first three marks: M1 Attempt at implicit differentiation as evidenced by $2y \frac{dy}{dx}$ term A1 $2x + 2y \frac{dy}{dx} - 8 + 2 \frac{dy}{dx} = 0$ and substitutes O $\frac{dy}{dx} = 4$ to obtain $\frac{dy}{dx}$	
			Examiner's Comments	Tiogative reciprocal	
				rate solutions to this question, although the of the centre of a circle but without that	
				ring to some. There were both sign errors	
			•	–2) being frequently seen. Slips alsolient of the line. Many candidates chose the	
				o find the equation, although the use of the	
				A itself were not uncommon. Some	
			candidates failed to give th	e final answer in the required form.	

				Circles
	B1ft B1ft	Must be seen / used in (ii); ft their centre ft their gradient in (i)		
A = (8, -2) $m' = 4$	M1 M1	Attempts equation of perpendicular line through their A. (Not (4, -1).)	If centre used here, max B1B1, 2/6.	
$y = 0, x = \frac{17}{2}$ When $y = 0, x = \frac{17}{2}$ $= \frac{1}{2} \times \frac{17}{2} \times 2 = \frac{17}{2}$	M1	Attempt to find x value of point B from their equation of perpendicular line Attempt to find area of OAB e.g.	Equation of line/B may not be seen explicitly. Must have used a valid method to find B. $OA = \sqrt{68}$, $AB = \sqrt{\frac{17}{4}}$	
Area 2 2 2	A1 [6]	their OB × their $\frac{1}{2}$ × their OB × their $\frac{1}{2}$ × their OA ×	Look out for "correct" answer from wrong coordinates – A0 .	

				their AB, or split into two triangles Accept 8.5 or equivalent fractions but not unsimplified surds. www Examiner's Comments Candidates who made errors in the first part of the question were still able to score 4 out of 5 in this part as follow through and method marks were allowed from wrong centres. Just over a quarter of candidates were able to secure all 5 marks, but a significant minority were unable to access this part, either through not realising A was the		Circles
				opposite end of the diameter to 0 of perpendicular gradient was needed Several found B through the use of equation of the perpendicular line. It sketch were more likely to access, at those who did not.	to find the coordinates of B. a sketch rather than finding the n general candidates who used a	
		Total	11			
10	а	$(x \pm 3)^2 + (y \pm 2)^2 \dots$	M1(AO1.1a) A1(AO1.1)	Attempt to complete the square		
7.5	-	(-3,2)	[2]	State correct centre www	Ignore constant term(s)	

						Circles
		13 + k = 16	M1(AO1.1a)	Attempt to link 9,		
	b		A1(AO1.1)	4, 16 and <i>k</i>		
		k = 3		Obtain $k = 3$		
			[2]			
		Total	4			
					Allow $x = -3$, $y = 1$	
11	а	centre is (-3, 1) $(x+3)^2 - 9 + (y-1)^2 - 1 - 10 = 0$ $(x+3)^2 + (y-1)^2 = 20$	B1 (AO 1.1) M1 (AO 1.1a)	Correct centre of circle Attempt to complete the square twice	Allow for $(x \pm 3)^2$ $\pm 9 + (y \pm 1)^2 \pm 1$ seen $(x \pm 3)^2 +$ $(y \pm 1)^2 - 10 = 0$ is M0 as no evidence of subtracting the constant terms to complete the squares Or attempt to use $f^2 = g^2 + f^2 - c$	
		$radius = 2\sqrt{5} or \sqrt{20}$	A1 (AO 1.1)	Correct radius	From correct working only, including correct factorisation Allow $r = 4.47$, or better	
			[3]	Examiner's Comments		
				Solutions to this question were near	arly always correct, with most	

		candidates choosing to write the equation in factorised form. There were a few sign errors when stating the centre of the circle, and also a few errors when subtracting the constant term when completing the square each time.		Circles
$x^{2} + (2x-3)^{2} + 6x - 2(2x-3) - 10 = 0$ OR $(x+3)^{2} + (2x-4)^{2} = 20$	M1 (AO 3.1a)	Substitute the linear equation into the quadratic equation	Either substitute for <i>y</i> , or an attempt at <i>x</i> Either use the given expanded equation or their attempt at a factorised equation	
b $x^2 - 2x + 1 = 0$	A1 (AO 1.1)	Correct three term quadratic	Must be three terms, but not necessarily on same side of equation	
	A 1	BC, or from any valid method	A0 if additional incorrect x value	
<i>x</i> = 1	(AO 1.1)	A0 if additional points also given	Allow $x = 1, y = -1$	
(1, -1)	A1 (AO 2.1)	Examiner's Comments		
	[4]	All candidates attempted to solve the using the expanded equation of the As this question did not specify 'de that candidates would solve the enbut instead most still showed the factorial and the same and the same and the same are same as the same are same are same as the same are same as the same are same are same as the same are same are same as the same are same are same as the same are same as the same are same are same as the same are same are same as the same are same as the same are same are same as the same are same are same as the same are same as the same are same are same as the same are sam	e circle or the factorised equation. tailed reasoning', it was expected suing quadratic on their calculator	

	С	The line is a tangent to the circle at (1, -1)	B1ft (AO 2.2a)	Correct deduction Strict follow- through on their number of roots from (b) Examiner's Comments Part (b) shows one point of intersec candidates would put this informati the line was a tangent to the circle. (b) resulting in other than one point could still get this mark for a correct	on into context and conclude that If an error had happened in part of intersection then candidates	Circles
		Total	8			
12	a	$(x+4)^2 - 16 + (y-1)^2 - 1 - 7 = 0$ $(x+4)^2 + (y-1)^2 = 24$ $\mathcal{O}(-4,1)$	M1(AO 1.1)E A1(AO 1.1)E [2]	Correct method to find centre of circle	e.g. $(x \pm 4)^2$ and $(y \pm 1)^2$ seen (or implied)	

							Circles
					Examiner's Comments This proved to be a good start for r majority correctly completing the so of the centre of the circle. When err always down to sign errors inside the	quare (twice) to find the coordinates rors occurred these were nearly	
	b	Radius = $\sqrt{24}$		B1(AO 1.1)E [1]	e e.g. 2√6 Examiner's Comments Nearly all candidates stated the race part (a) or part (b).	dius of the circle correctly in either	
		Total		3			
13		DR $y-1=-2(x-2)$	or $y = -2x + c &$ sub (2, 1)	M1 (AO3.1a)	If no wking seen, no marks or $y-1=2(x-(-2))$ or solve $y=-2x+5$	Alt method using proportion: Centre is on <i>y</i> -axis, not (0, 1) (may be implied) M1 $\frac{c-1}{2} = 2$	
		y = -2x + 5	<i>c</i> = 5	A1 (AO1.1)	y = 2x + 5 or c = 5	2 or $c = 1 + 2 \times 2$ $c = 5 \text{ A1}$	

	(AO3.2a)			Circles
Centre is (0, 5)	M1	stated or implied	Centre is (0, 5) A1	
	(AO1.1a)			
$r = \sqrt{2^2 + 4^2}$		or $r^2 = 2^2 + 4^2$ or ft their centre		
= √20				
	M1 (AO1.2)	= 20		
$x^2 + (y - 5)^2 = 20$ oe				
		or $a = 0$, $b = -10$, $c = 5$		
	A1	ft their centre and rad² (≠ 0), however		
$x^2 + y^2 - 10y + 5 = 0$	(AO1.1)	found		
	[6]	cao		
		Examiner's Comments		
		A clear initial sketch proved to be ex		
		candidates that successfully answer consider one or both normals and t		
		significant progress. Some found the by finding the midpoint of the line jo		
		treated (0, 0) as the centre of the ci	rcle. However, despite many false	
		starts, many used their incorrect ce circle, and gained at least one mark		
		found a centre (p, q) and radius r, a r.	and then wrote $x^2 + y^2 + px + qy +$	
		A great many candidates started from	om the equation $y^2 + y^2 + cy + b + \cdots$	
		c = 0, given in the question, and att		

				substituting coordinates and various other devices. Not surprisingly, these generally failed to gain any marks. (Although one candidate did actually succeed by this method, taking several pages to do so, and gained full credit.)
		Total	6	
		$x^2 + 4x^2 + 2x - 32x + 56 = 0$	M1 (AO 2.1)	Substitute $y = 2x$ into equation of circle
14	а	$5x^2 - 30x + 56 = 0$	M1 (AO 2.4) A1 (AO	and rearrange to three term quadratic
		$30^2 - 4 \times 5 \times 56 = -220$		Consider discriminant
		b^2 – $4ac$ < 0 hence no real roots so the circle and line do not intersect	2.2a) [3]	Conclude with no real roots
		Centre of circle is (-1, 8) Gradient of perpendicular is -0.5	B1 (AO 1.1) B1 (AO 2.2a)	For gradient of
	b	(i) $y-8=-0.5(x+1)$	M1 (AO 1.1)	Attempt equation of line through their circle centre with gradient of -0.5
		x + 2y = 15	[4]	Obtain correct equation Allow any 3 term

			T 1	Circles
			equivalent	
5 <i>x</i> = 15	M1 (AO 3.1b)			
x = 3, y = 6	31.15,			
distance from centre to line is $\sqrt{4^2 + 2^2} = \sqrt{20} = 2\sqrt{5}$	M1 (AO 1.1)	Attempt to solve simultaneously with $y = 2x$		
(ii) $ (x+1)^2 + (y-8)^2 = 3^2 $	M1 (AO 1.1a)	Use Pythagoras to find distance between centre of circle and point of intersection		
hence shortest distance between line and circle is $2\sqrt{5}-3$	A1 (AO 3.2a) [4]	Attempt to find radius of circle Obtain $2\sqrt{5}-3$	Seen at any point in solution – allow back credit to part (a) if the radius is found at the same time as the centre of circle	
			Allow any exact equiv	
Total	11			

		$(x-a)^2 + (y+a)^2 = K$ $K = 2a^2$	B1 (AO 1.1)	Correct LHS (accept if expanded: $x^2 + y^2 - 2ax + 2ay + 2a^2$)	Circles
15	а		B1 (AO 1.1)	Correct RHS Allow full marks for any equivalent	
			[2]	form, e.g. $x^2 + y^2 - 2ax + 2ay = 0$	
			M1 (AO		
		$(1 - a)^2 + (-5 + a)^2 = 2a^2$	1.1a) M1 (AO	Substitute (1, -5) into their circle equation	
	b	13	1.1)	Solve for <i>a</i> and	
		$a = \frac{13}{6} \Rightarrow \text{Area} = \pi \times 2\left(\frac{13}{6}\right)^2$ $= \frac{169}{18}\pi$	A1 (AO 2.2a)	substitute into πl^2 with their l^2	
			[3]		
		Total	5		

© OCR 2017. Page 29 of 29 PhysicsAndMathsTutor.com