Questions

Q1.

A circle C with centre at (-2, 6) passes through the point (10, 11).

(a) Show that the circle *C* also passes through the point (10, 1).

The tangent to the circle C at the point (10, 11) meets the y axis at the point P

and the tangent to the circle C at the point (10, 1) meets the y axis at the point Q.

(b) Show that the distance *PQ* is 58 explaining your method clearly.

(7)

(3)

(Total for question = 10 marks)

Q2.

The circle C has equation

$$x^2 + y^2 - 6x + 10y + 9 = 0$$

(a) Find

- (i) the coordinates of the centre of C
- (ii) the radius of C

(3)

The line with equation y = kx, where k is a constant, cuts C at two distinct points.

(b) Find the range of values for *k*.

(6)

(Total for question = 9 marks)

Q3.

A circle *C* has equation

$$x^2 + y^2 - 4x + 8y - 8 = 0$$

(a) Find

(i) the coordinates of the centre of *C*,

(ii) the exact radius of C.

(3)

The straight line with equation x = k, where k is a constant, is a tangent to C.

(b) Find the possible values for *k*.

(2)

(Total for question = 5 marks)

Q4.

(i) A circle C_1 has equation

$$x^2 + y^2 + 18x - 2y + 30 = 0$$

The line *I* is the tangent to C_1 at the point P(-5, 7). Find an equation of *I* in the form ax + by + c = 0, where *a*, *b* and *c* are integers to be found.

(5)

(ii) A different circle C_2 has equation

$$x^2 + y^2 - 8x + 12y + k = 0$$

where k is a constant.

Given that C_2 lies entirely in the 4th quadrant, find the range of possible values for *k*.

(4)

(Total for question = 9 marks)

Q5.

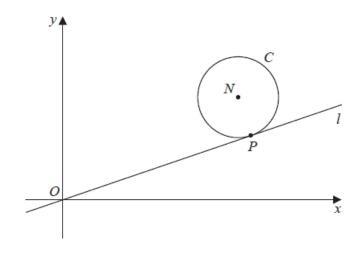


Figure 4 shows a sketch of a circle C with centre N(7, 4)

1

The line *I* with equation $y = \frac{1}{3}x$ is a tangent to *C* at the point *P*.

Find

- (a) the equation of line *PN* in the form y = mx + c, where *m* and *c* are constants,
- (2)
- (b) an equation for C.

The line with equation $y = \frac{1}{3}x + k$, where k is a non-zero constant, is also a tangent to C.

(c) Find the value of k.

(3)

(Total for question = 9 marks)

Q6.

A circle *C* has equation

$$x^2 + y^2 - 4x + 10y = k$$

where *k* is a constant.

(a) Find the coordinates of the centre of *C*.

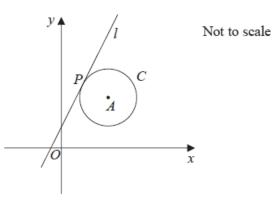
(2)

(b) State the range of possible values for *k*.

(2)

(Total for question = 4 marks)

Q7.



The circle C has centre A with coordinates (7, 5).

The line *I*, with equation y = 2x + 1, is the tangent to *C* at the point *P*, as shown in Figure 3.

(a) Show that an equation of the line *PA* is 2y + x = 17

(b) Find an equation for C.

The line with equation y = 2x + k, $k \neq 1$ is also a tangent to *C*.

(c) Find the value of the constant *k*.

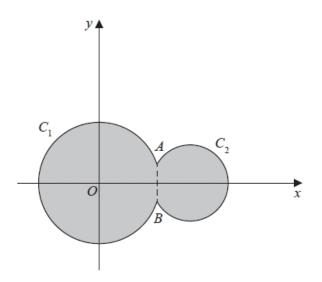
(3)

(3)

(4)

(Total for question = 10 marks)

Q8.



Circle C_1 has equation $x^2 + y^2 = 100$

Circle C_2 has equation $(x - 15)^2 + y^2 = 40$

The circles meet at points *A* and *B* as shown in Figure 3.

(a) Show that angle AOB = 0.635 radians to 3 significant figures, where O is the origin.

The region shown shaded in Figure 3 is bounded by C_1 and C_2

(b) Find the perimeter of the shaded region, giving your answer to one decimal place.

(4)

(4)

(Total for question = 8 marks)

Q9.

A circle C with radius r

- lies only in the 1st quadrant
- touches the *x*-axis and touches the *y*-axis

The line *l* has equation 2x + y = 12

(a) Show that the *x* coordinates of the points of intersection of *I* with *C* satisfy

$$5x^2 + (2r - 48)x + (r^2 - 24r + 144) = 0$$

Given also that *I* is a tangent to *C*,

(b) find the two possible values of *r*, giving your answers as fully simplified surds.

(4)

(3)

(Total for question = 7 marks)

Q10.

The circle C has equation

$$x^2 + y^2 - 10x + 4y + 11 = 0$$

(a) Find

- (i) the coordinates of the centre of C,
- (ii) the exact radius of C, giving your answer as a simplified surd.

(4)

The line *l* has equation y = 3x + k where *k* is a constant.

Given that *I* is a tangent to *C*,

(b) find the possible values of *k*, giving your answers as simplified surds.

(5)

(Total for question = 9 marks)

Mark Scheme

Q1.

Question	Sch	ieme	Marks	AOs
(a)	Way 1: Finds circle equation $(x \pm 2)^2 + (y \mp 6)^2 =$ $(10 \pm (-2))^2 + (11 \mp 6)^2$	Way 2: Finds distance between (-2,6) and (10, 11)	M1	3.1a
	Checks whether (10,1) satisfies their circle equation	Finds distance between $(-2,6)$ and $(10, 1)$	M1	1.1
	Obtains $(x+2)^2 + (y-6)^2 = 13^2$ and checks that $(10+2)^2 + (1-6)^2 = 13^2$ so states that (10,1) lies on C *	Concludes that as distance is the same (10, 1) lies on the circle C^*	A1*	2.1
			(3)	
(b)	Finds radius gradient $\frac{11-6}{10-(-2)}$	or $\frac{1-6}{10-(-2)}$ (m)	M1	3.1a
	Finds gradient perpendicular to t	heir radius using $-\frac{1}{m}$	M1	1.1b
	Finds (equation and) y intercept	of tangent (see note below)	M1	1.1b
	Obtains a correct value for y inte 23	rcept of their tangent i.e. 35 or -	A1	1.1b
	Way 1: Deduces gradient of second tangent	Way 2: Deduces midpoint of <i>PQ</i> from symmetry ((0,6))	M1	1.1b
	Finds (equation and) y intercept of second tangent	Uses this to find other intercept	M1	1.1b
	So obtains distance PQ=35+23=	58*	A1*	1.1b
			(7)	
			(10	marks
		Notes		

M1 : Completes method for checking that (10, 1) lies on circle

A1*: Completely correct explanation with no errors concluding with statement that circle passes through (10, 1)

(b) M1: Calculates
$$\frac{11-6}{10-(-2)}$$
 or $\frac{1-6}{10-(-2)}$ (m)
M1: Finds $-\frac{1}{m}$ (correct answer is $-\frac{12}{5}$ or $\frac{12}{5}$) This is referred to as m' in the next note.
M1: Attempts $y-11 = their\left(-\frac{12}{5}\right)(x-10)$ or $y-1 = their\left(\frac{12}{5}\right)(x-10)$ and puts $x = 0$, or
uses vectors to find intercept e.g. $\frac{y-11}{10} = -m'$
A1: One correct intercept 35 or -23

Qu 17(b) continued Way 1: M1: Uses the negative of their previous tangent gradient or uses a correct $-\frac{12}{5}$ or $\frac{12}{5}$ M1: Attempts the second tangent equation and puts x = 0 or uses vectors to find intercept e.g. $\frac{11-y}{10} = m'$ Way 2: M1: Finds midpoint of *PQ* from symmetry. (This is at (0,6)) M1: Uses this midpoint to find second intercept or to find difference between midpoint and first intercept. e.g. 35 - 6 = 29 then 6 - 29 = -23 so second intercept is at (-23, 0) Ways 1 and 2:

A1*: Obtain 58 correctly from a valid method.

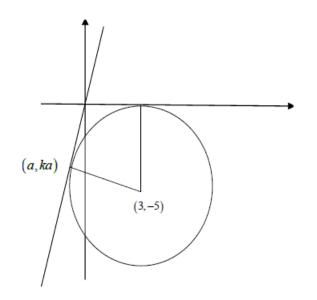
Q2.

Question	Scheme	Marks	AOs
(a)	Attempts to complete the square $(x \pm 3)^2 + (y \pm 5)^2 =$	M1	1.1b
	(i) Centre (3,-5)	A1	1.1b
	(ii) Radius 5	A1	1.1b
		(3)	
(b)	Uses a sketch or otherwise to deduce $k = 0$ is a critical value	B1	2.2a
	Substitute $y = kx$ in $x^2 + y^2 - 6x + 10y + 9 = 0$	M1	3.1a
	Collects terms to form correct 3TQ $(1+k^2)x^2+(10k-6)x+9=0$	A1	1.1b
	Attempts $b^2 - 4ac0$ for their a, b and c leading to values for k " $(10k-6)^2 - 36(1+k^2)0$ " $\rightarrow k =,$ $\left(0 \text{ and } \frac{15}{8}\right)$	M1	1.1b
	Uses $b^2 - 4ac > 0$ and chooses the outside region (see note) for their critical values (Both <i>a</i> and <i>b</i> must have been expressions in <i>k</i>)	dM1	3.1a
	Deduces $k < 0, k > \frac{15}{8}$ oe	A1	2.2a
		(6)	
		(9 1	narks)

Notes **(a)** M1: Attempts $(x \pm 3)^2 + (y \pm 5)^2 = ...$ This mark may be implied by candidates writing down a centre of $(\pm 3, \pm 5)$ or $r^2 = 25$ (i) A1: Centre (3, -5) (ii) A1: Radius 5. Do not accept √25 Answers only (no working) scores all three marks (b) **B1:** Uses a sketch or their subsequent quadratic to deduce that k = 0 is a critical value. You may award for the correct k < 0 but award if $k \le 0$ or even with greater than symbols M1: Substitutes y = kx in $x^2 + y^2 - 6x + 10y + 9 = 0$ or their $(x \pm 3)^2 + (y \pm 5)^2 = ...$ to form an equation in just x and k. It is possible to substitute $x = \frac{y}{k}$ into their circle equation to form an equation in just y and k. A1: Correct 3TQ $(1+k^2)x^2 + (10k-6)x + 9 = 0$ with the terms in x collected. The "= 0" can be implied by subsequent work. This may be awarded from an equation such as $x^{2} + k^{2}x^{2} + (10k-6)x + 9 = 0$ so long as the correct values of a, b and c are used in $b^{2} - 4ac...0$. FYI The equation in y and k is $(1+k^2)y^2 + (10k^2 - 6k)y + 9k^2 = 0$ oe M1: Attempts to find two critical values for k using $b^2 - 4ac...0$ or $b^2 - 4ac$ where ... could be "=" or any inequality. dM1: Finds the outside region using their critical values. Allow the boundary to be included. It is dependent upon all previous M marks and both a and b must have been expressions in k. Note that it is possible that the correct region could be the inside region if the coefficient of k^2 in 4*ac* is larger than the coefficient of k^2 in b^2 Eg. $b^{2} - 4ac = (k-6)^{2} - 4 \times (1+k^{2}) \times 9 > 0 \Longrightarrow -35k^{2} - 12k > 0 \Longrightarrow k(35k+12) < 0$

A1: Deduces $k < 0, k > \frac{15}{8}$. This must be in terms of k. Allow exact equivalents such as $k < 0 \cup k > 1.875$ but not allow $0 > k > \frac{15}{8}$ or the above with AND, & or \bigcap between the two inequalities

Alternative using a geometric approach with a triangle with vertices at (0,0), and (3,-5)



Alt (b)	Uses a sketch or otherwise to deduce $k = 0$ is a critical value	B1	2.2a
	Distance from (a, ka) to $(0, 0)$ is $3 \Rightarrow a^2(1+k^2) = 9$	M1	3.1a
	Tangent and radius are perpendicular $\Rightarrow k \times \frac{ka+5}{a-3} = -1 \Rightarrow a(1+k^2) = 3-5k$	M1	3.1a
	Solve simultaneously, (dependent upon both M's)	dM1	1.1b
	$k = \frac{15}{8}$	A1	1.1b
	Deduces $k < 0, k > \frac{15}{8}$	A1	2.2a
		(6)	

Q3.

Question	Scheme	Marks	AOs
(a)	$x^2 + y^2 - 4x + 8y - 8 = 0$		
	Attempts $(x-2)^{2} + (y+4)^{2} - 4 - 16 - 8 = 0$	M1	1.1b
	(i) Centre (2,-4)	A1	1.1b
	(ii) Radius $\sqrt{28}$ oe Eg $2\sqrt{7}$	A1	1.1b
		(3)	
(b)	Attempts to add/subtract 'r' from '2' $k = 2 \pm \sqrt{28}$	M1	3.1a
	.10	A1ft	1.1b
		(2)	
		(5	marks)

(a)

M1: Attempts to complete the square. Look for $(x \pm 2)^2 + (y \pm 4)^2 \dots$

If a candidate attempts to use $x^2 + y^2 + 2gx + 2fy + c = 0$ then it may be awarded for a centre of $(\pm 2, \pm 4)$ Condone $a = \pm 2, b = \pm 4$

A1: Centre (2, -4) This may be written separately as x = 2, y = -4 BUT a = 2, b = -4 is A0

A1: Radius $\sqrt{28}$ or $2\sqrt{7}$ isw after a correct answer

M1: Attempts to add or subtract their radius from their 2.

Alternatively substitutes y = -4 into circle equation and finds x/k by solving the quadratic equation by a suitable method.

A third (and more difficult) method would be to substitute x = k into the equation to form a quadratic eqn in $y \Rightarrow y^2 + 8y + k^2 - 4k - 8 = 0$ and use the fact that this would have one root. E.g. $b^2 - 4ac = 0 \Rightarrow 64 - 4(k^2 - 4k - 8) = 0 \Rightarrow k = ..$ Condone slips but the method must be sound.

A1ft: $k = 2 + \sqrt{28}$ and $k = 2 - \sqrt{28}$ Follow through on their 2 and their $\sqrt{28}$ If decimals are used the values must be calculated. Eg $k = 2 \pm 5.29 \rightarrow k = 7.29, k = -3.29$ Accept just $2 \pm \sqrt{28}$ or equivalent such as $2 \pm 2\sqrt{7}$ Condone $x = 2 + \sqrt{28}$ and $x = 2 - \sqrt{28}$ but not $y = 2 + \sqrt{28}$ and $y = 2 - \sqrt{28}$

04
Q4.

(i)

Question	Scheme	Marks	AOs
(i)	$x^{2} + y^{2} + 18x - 2y + 30 = 0 \Rightarrow (x+9)^{2} + (y-1)^{2} =$	M1	1.1b
	Centre (-9,1)	A1	1.1b
	Gradient of line from $P(-5,7)$ to " $(-9,1)$ " = $\frac{7-1}{-5+9} = \left(\frac{3}{2}\right)$	M1	1.1b
	Equation of tangent is $y-7 = -\frac{2}{3}(x+5)$	dM1	3.1a
	$3y-21 = -2x-10 \Longrightarrow 2x+3y-11 = 0$	A1	1.1b
		(5)	
(ii)	$x^{2} + y^{2} - 8x + 12y + k = 0 \Rightarrow (x - 4)^{2} + (y + 6)^{2} = 52 - k$	M1	1.1b
	Lies in Quadrant 4 if radius $< 4 \Rightarrow "52 - k" < 4^2$	M1	3.1a
	$\Rightarrow k > 36$	A1	1.1b
	Deduces $52 - k > 0 \Rightarrow$ Full solution $36 < k < 52$	A1	3.2a
		(4)	
		(9 marks)

Notes

Attempts $(x \pm 9)^2 \dots (y \pm 1)^2 = \dots$ It is implied by a centre of $(\pm 9, \pm 1)$ M1:

A1: States or uses the centre of C is (-9,1)

A correct attempt to find the gradient of the radius using their (-9,1) and P. E.g. $\frac{7 - "1"}{-5 - " - 9"}$ M1:

dM1: For the complete strategy of using perpendicular gradients and finding the equation of the tangent to the circle. It is dependent upon both previous M's. $y-7 = -\frac{1}{\text{gradient } CP}(x+5)$ Condone a sign slip on one of the -7 or the 5. A1: 2x+3y-11=0 oe such as $k(2x+3y-11)=0, k \in \mathbb{Z}$

Attempt via implicit differentiation. The first three marks are awarded

Differentiates $x^{2} + y^{2} + 18x - 2y + 30 = 0 \Rightarrow ...x + ...y \frac{dy}{dx} + 18 - 2\frac{dy}{dx} = 0$ Differentiates $x^{2} + y^{2} + 18x - 2y + 30 = 0 \Rightarrow 2x + 2y \frac{dy}{dx} + 18 - 2\frac{dy}{dx} = 0$ M1: A1: Substitutes P(-5,7) into their equation involving $\frac{dy}{dx}$ M1:

(ii)

- M1: For reaching $(x \pm 4)^2 + (y \pm 6)^2 = P k$ where *P* is a positive constant. Seen or implied by centre coordinates $(\mp 4, \mp 6)$ and a radius of $\sqrt{P k}$
- M1: Applying the strategy that it lies entirely within quadrant if "their radius" < 4 and proceeding to obtain an inequality in k only (See scheme). Condone ..., 4 for this mark.
- A1: Deduces that k > 36
- A1: A rigorous argument leading to a full solution. In the context of the question the circle exists so that as well as k > 36 $52 k > 0 \Rightarrow 36 < k < 52$ Allow $36 < k_{,,}$ 52

Q5.

Question	Scheme	Marks	AOs
(a)	Deduces the line has gradient "-3" and point $(7, 4)$ Eg $y-4 = -3(x-7)$	M1	2.2a
	y = -3x + 25	A1	1.1b
		(2)	
(b)	Solves $y = -3x + 25$ and $y = \frac{1}{3}x$ simultaneously	M1	3.1a
	$P = \left(\frac{15}{2}, \frac{5}{2}\right) \text{ oe}$	A1	1.1b
	Length $PN = \sqrt{\left(\frac{15}{2} - 7\right)^2 + \left(4 - \frac{5}{2}\right)^2} = \left(\sqrt{\frac{5}{2}}\right)$	M1	1.1b
	Equation of <i>C</i> is $(x-7)^2 + (y-4)^2 = \frac{5}{2}$ o.e.	A1	1.1b
		(4)	
(c)	Attempts to find where $y = \frac{1}{3}x + k$ meets <i>C</i> using vectors	MI	2.10
	Eg: $\binom{7.5}{2.5} + 2 \times \binom{-0.5}{1.5}$	M1	3.1a
	Substitutes their $\left(\frac{13}{2}, \frac{11}{2}\right)$ in $y = \frac{1}{3}x + k$ to find k	M1	2.1
	$k = \frac{10}{3}$	A1	1.1b
		(3)	
	-	1	(9 marks)
(c)	Attempts to find where $y = \frac{1}{3}x + k$ meets C via		
	simultaneous equations proceeding to a $3TQ$ in x (or y)	M1	3.1a
	FYI $\frac{10}{9}x^2 + \left(\frac{2}{3}k - \frac{50}{3}\right)x + k^2 - 8k + \frac{125}{2} = 0$		
	Uses $b^2 - 4ac = 0$ oe and proceeds to $k =$	M1	2.1
	$k = \frac{10}{3}$	A1	1.1b
		(3)	

Notes: (a)

M1: Uses the idea of perpendicular gradients to deduce that gradient of *PN* is -3 with point (7,4) to find the equation of line *PN* So sight of y-4=-3(x-7) would score this mark If the form y = mx + c is used expect the candidates to proceed as far as c = ... to score this mark.

A1: Achieves y = -3x + 25

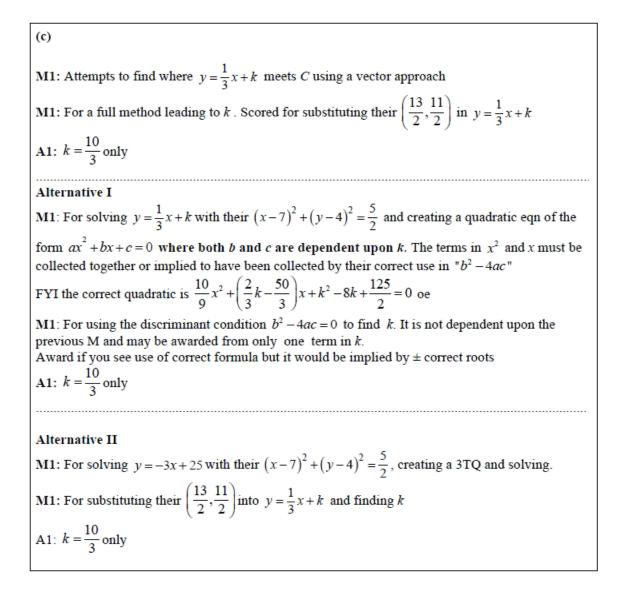
(b)

M1: Awarded for an attempt at the key step of finding the coordinates of point *P*. ie for an attempt at solving their y = -3x + 25 and $y = \frac{1}{3}x$ simultaneously. Allow any methods (including use of a calculator) but it must be a valid attempt to find both coordinates.

 $\mathbf{A1:} \ P = \left(\frac{15}{2}, \frac{5}{2}\right)$

M1: Uses Pythagoras' Theorem to find the radius or radius ² using their $P = \left(\frac{15}{2}, \frac{5}{2}\right)$ and (7,4). There must be an attempt to find the difference between the coordinates in the use of Pythagoras A1: Full and careful work leading to a correct equation. Eg $(x-7)^2 + (y-4)^2 = \frac{5}{2}$ or its expanded

form. Do not accept $(x-7)^2 + (y-4)^2 = \left(\sqrt{\frac{5}{2}}\right)^2$



Q6.

Quest	tion	Scheme	Marks	AOs
(a))	Attempts $(x-2)^2 + (y+5)^2 =$	M1	1.1b
		Centre (2, -5)	A1	1.1b
			(2)	
(b))	Sets $k + 2^2 + 5^2 > 0$	M1	2.2a
		$\Rightarrow k > -29$	A1ft	1.1b
			(2)	
			(4 n	narks)
Notes				
<mark>(a)</mark>				
M1:	Atter	mpts to complete the square so allow $(x-2)^2 + (y+5)^2 = \dots$		
A1:	States the centre is at $(2, -5)$. Also allow written separately $x = 2, y = -5$			
	(2, -5) implies both marks			
(b)				
M1:	Dedu	uces that the right hand side of their $(x \pm)^2 + (y \pm)^2 =$ is > 0 or	≥ 0	
A1ft:	<i>k</i> > -	-29 Also allow $k \ge -29$ Follow through on their rhs of $(x \pm)^2 + (y \pm)^2$	$(\pm)^2 =$	

Q7.

Question	Scheme	Marks	AOs
(a)	Deduces that gradient of <i>PA</i> is $-\frac{1}{2}$	M1	2.2a
	Finding the equation of a line with gradient " $-\frac{1}{2}$ " and point (7,5) $y-5 = -\frac{1}{2}(x-7)$	М1	1.1b
	Completes proof $2y + x = 17$ *	A1* (3)	1.1b
		(3)	
(b)	Solves $2y + x = 17$ and $y = 2x + 1$ simultaneously	M1	2.1
	P = (3,7)	A1	1.1b
	Length $PA = \sqrt{(3-7)^2 + (7-5)^2} = (\sqrt{20})$	M1	1.1b
	Equation of C is $(x-7)^2 + (y-5)^2 = 20$	A1	1.1b
		(4)	
(c)	Attempts to find where $y = 2x + k$ meets C using $\overrightarrow{OA} + \overrightarrow{PA}$	M1	3.1a
	Substitutes their (11,3) in $y = 2x + k$ to find k	M1	2.1
	k = -19	A1	1.1b
		(3)	
	·	•	(10 marks

(c)	Attempts to find where $y = 2x + k$ meets <i>C</i> via simultaneous equations proceeding to a 3TQ in <i>x</i> (or <i>y</i>) FYI $5x^2 + (4k-34)x + k^2 - 10k + 54 = 0$	М1	3.1a
	Uses $b^2 - 4ac = 0$ oe and proceeds to $k =$	M1	2.1
	k = -19	A1	1.1b
		(3)	
followed by o mark M1: Award So sigl	e idea of perpendicular gradients to deduce that gradient of <i>PA</i> is $-\frac{1}{2}$. Correct work. You may well see the perpendicular line set up as $y = -\frac{1}{2}$ for the method of finding the equation of a line with a changed gradient in the form $y = 5 = \frac{1}{2}(x-7)$ would score this mark	x + c which and the point	scored this (7,5)

A1*: Completes proof with no errors or omissions 2y + x = 17

(b) M1: Awarded for an attempt at the key step of finding the coordinates of point *P*. ie for an attempt at solving 2y + x = 17 and y = 2x + 1 simultaneously. Allow any methods (including use of a calculator) but it must be a valid attempt to find both coordinates. Do not allow where they start 17 - x = 2x + 1 as they have set 2y = y but condone bracketing errors, eg $2 \times 2x + 1 + x = 17$

A1: P = (3,7)

M1: Uses Pythagoras' Theorem to find the radius or radius ² using their P = (3, 7) and (7, 5). There must be an attempt to find the difference between the coordinates in the use of Pythagoras

A1: $(x-7)^2 + (y-5)^2 = 20$. Do not accept $(x-7)^2 + (y-5)^2 = (\sqrt{20})^2$

(c)

M1: Attempts to find where y = 2x + k meets C.

Awarded for using $\overrightarrow{OA} + \overrightarrow{PA}$. (11,3) or one correct coordinate of (11,3) is evidence of this award.

M1: For a full method leading to k. Scored for either substituting their (11,3) in y = 2x + k

or, in the alternative, for solving their $(4k-34)^2 - 4 \times 5 \times (k^2 - 10k + 54) = 0 \Rightarrow k = ...$ Allow use of a calculator here to find roots. Award if you see use of correct formula but it would be implied by \pm correct roots Al: k = -19 only

Alternative I

M1: For solving y = 2x + k with their $(x-7)^2 + (y-5)^2 = 20$ and creating a quadratic eqn of the form $ax^2 + bx + c = 0$ where both *b* and *c* are dependent upon *k*. The terms in x^2 and *x* must be collected together or implied to have been collected by their correct use in " $b^2 - 4ac$ " FYI the correct quadratic is $5x^2 + (4k-34)x + k^2 - 10k + 54 = 0$

M1: For using the discriminant condition $b^2 - 4ac = 0$ to find k. It is not dependent upon the previous M and may be awarded from only one term in k.

 $(4k-34)^2 - 4 \times 5 \times (k^2 - 10k + 54) = 0 \Rightarrow k = \dots$ Allow use of a calculator here to find roots.

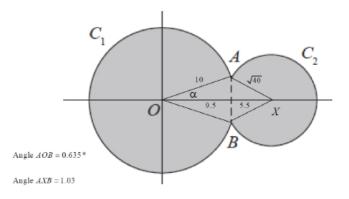
Award if you see use of correct formula but it would be implied by \pm correct roots A1: k = -19 only

Alternative II

M1: For solving 2y + x = 17 with their $(x-7)^2 + (y-5)^2 = 20$, creating a 3TQ and solving. M1: For substituting their (11,3) into y = 2x + k and finding k A1: k = -19 only Other method are possible using trigonometry.

Q8.

Question	Scheme	Marks	AOs
(a)	Solves $x^2 + y^2 = 100$ and $(x - 15)^2 + y^2 = 40$ simultaneously to find x or y E.g. $(x - 15)^2 + 100 - x^2 = 40 \Rightarrow x =$	M1	3.1a
	Either $\Rightarrow -30x + 325 = 40 \Rightarrow x = 9.5$ Or $y = \frac{\sqrt{39}}{2} = \operatorname{awrt} \pm 3.12$	A1	1.1b
	Attempts to find the angle <i>AOB</i> in circle C_1 Eg Attempts $\cos \alpha = \frac{"9.5"}{10}$ to find α then ×2	M1	3.1a
	Angle $AOB = 2 \times \arccos\left(\frac{9.5}{10}\right) = 0.635 \operatorname{rads}(3 \operatorname{sf})^*$	A1*	2.1
		(4)	
(b)	Attempts $10 \times (2\pi - 0.635) = 56.48$	M1	1.1b
	Attempts to find angle <i>AXB</i> or <i>AXO</i> in circle C_2 (see diagram) E.g. $\cos \beta = \frac{15 - 9.5}{\sqrt{40}} \Rightarrow \beta =$ (Note <i>AXB</i> =1.03 rads)	M1	3.1a
	Attempts $10 \times (2\pi - 0.635) + \sqrt{40} \times (2\pi - 2\beta)$	dM1	2.1
	= 89.7	A1	1.1b
		(4)	
	•		(8 marks



(a)

M1: For the key step in an attempt to find either coordinate for where the two circles meet. Look for an attempt to set up an equation in a single variable leading to a value for x or y.

A1:
$$x = 9.5$$
 (or $y = \frac{\sqrt{39}}{2} = awrt \pm 3.12$)

M1: Uses the radius of the circle and correct trigonometry in an attempt to find angle AOB in circle C_1

E.g. Attempts $\cos \alpha = \frac{"9.5"}{10}$ to find α then $\times 2$ $\sqrt{100 - "9.5"^2}$

Alternatives include $\tan \alpha = \frac{\sqrt{100 - "9.5"^2}}{"9.5"} = (0.3286...)$ to find α then $\times 2$

And $\cos AOB = \frac{10^2 + 10^2 - (\sqrt{39})^2}{2 \times 10 \times 10} = \frac{161}{200}$

Al*: Correct and careful work in proceeding to the given answer. Condone an answer with greater accuracy. Condone a solution where the intermediate value has been truncated, provided the trig equation is correct.

E.g.
$$\sin \alpha = \frac{\sqrt{39}}{20} \Rightarrow \alpha = 0.317 \Rightarrow AOB = 2\alpha = 0.635$$

Condone a solution written down from awrt 36.4° (without the need to shown any calculation.) ${\rm E}$

(b)

M1: Attempts to use the formula $s = r\theta$ with r = 10 and $\theta = 2\pi - 0.635$

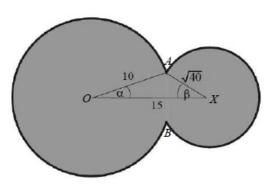
The formula may be embedded. You may see $2\pi 10+2\pi\sqrt{40}-10\times0.635$... which is fine for this M1

M1: Attempts to use a correct method in order to find angle AXB or AXO in circle C2

Amongst many other methods are $\tan \beta = \frac{"3.12"}{15-9.5}$ and $\cos AXB = \frac{40+40-(\sqrt{39})^2}{2\times\sqrt{40}\times\sqrt{40}} = \frac{41}{80}$ Note that many candidates believe this to be 0.635. This scores M0 dM0 A0

dM1: A full and complete attempt to find the perimeter of the region. It is dependent upon having scored both M's.

A1: awrt 89.7



(a)

M1: For the key step in attempting to find all lengths in triangle OAX, condoning slips

A1: All three lengths correct

M1: Attempts cosine rule to find α then ×2

A1*: Correct and careful work in proceeding to the given answer

Q9.

Question	Scheme	Marks	AOs
(a)	<i>C</i> is $(x-r)^{2} + (y-r)^{2} = r^{2}$ or $x^{2} + y^{2} - 2rx - 2ry + r^{2} = 0$	B1	2.2a
	$y = 12 - 2x, \ x^2 + y^2 - 2rx - 2ry + r^2 = 0$ $\Rightarrow x^2 + (12 - 2x)^2 - 2rx - 2r(12 - 2x) + r^2 = 0$ or	M1	1.1b

	y=12-2x, $(x-r)^2 + (y-r)^2 = r^2$ ⇒ $(x-r)^2 + (12-2x-r)^2 = r^2$		
	$x^{2} + 144 - 48x + 4x^{2} - 2rx - 24r + 4rx + r^{2} = 0$ $\Rightarrow 5x^{2} + (2r - 48)x + (r^{2} - 24r + 144) = 0 *$	A1*	2.1
		(3)	
(b)	$b^{2} - 4ac = 0 \Longrightarrow (2r - 48)^{2} - 4 \times 5 \times (r^{2} - 24r + 144) = 0$	M1	3.1a
	$r^2 - 18r + 36 = 0$ or any multiple of this equation	A1	1.1b
	$\Rightarrow (r-9)^2 - 81 + 36 = 0 \Rightarrow r = \dots$	dM1	1.1b
	$r = 9 \pm 3\sqrt{5}$	A1	1.1b
		(4)	
		(7	/ marks)

Notes:

(a)

B1: Deduces the correct equation of the circle

M1: Attempts to form an equation with terms of the form x^2 , x, r^2 , and xr only using $y = 12 \pm 2x$ and their circle equation which must be of an appropriate form. I.e. includes or implies an x^2 , y^2 , r^2 such as $x^2 + y^2 = r^2$. If their circle equation starts off as e.g. $(x \pm a)^2 + (y \pm b)^2 = r^2$ then the B mark and the M mark can be awarded when the "a" and "b" are replaced by r or -r as appropriate for their circle equation.

A1*: Uses correct and accurate algebra leading to the given solution.

(b)

M1: Attempts to use $b^2 - 4ac...0$ o.e. with $a = 5, b = 2r - 48, c = r^2 - 24r + 144$ and where ... is "=" or any inequality Allow minor slips when copying the *a*, *b* and *c* provided it does not make the work easier and allow their *a*, *b* and *c* if they are similar expressions.

FYI $(2r-48)^2 - 4 \times 5 \times (r^2 - 24r + 144) = 4r^2 - 192r + 2304 - 20r^2 + 480r - 2880 = -16r^2 + 288r - 576$

- A1: Correct quadratic equation in r (or inequality). Terms need not be all one side but must be collected. E.g. allow $r^2 - 18r = -36$ and allow any multiple of this equation (or inequality).
- dM1: Correct attempt to solve their 3TQ in r. Dependent upon previous M
- A1: Careful and accurate work leading to both answers in the required form (must be simplified surds)

Q10.

Question	Scheme	Marks	AOs
(a)(i)	$(x-5)^2 + (y+2)^2 = \dots$	M1	1.1b
	(5, -2)	A1	1.1b
(ii)	$r = \sqrt{"5"^2 + "-2"^2 - 11}$	M1	1.1b
	$r = 3\sqrt{2}$	A1	1.1b
		(4)	
(b)	$y = 3x + k \Rightarrow x^{2} + (3x + k)^{2} - 10x + 4(3x + k) + 11 = 0$	M1	2.1
	$\Rightarrow x^{2} + 9x^{2} + 6kx + k^{2} - 10x + 12x + 4k + 11 = 0$		
	$\Rightarrow 10x^2 + (6k+2)x + k^2 + 4k + 11 = 0$	A1	1.1b
	$b^{2} - 4ac = 0 \Rightarrow (6k + 2)^{2} - 4 \times 10 \times (k^{2} + 4k + 11) = 0$	M1	3.1a
	$\Rightarrow 4k^2 + 136k + 436 = 0 \Rightarrow k = \dots$	M1	1.1b
	$k = -17 \pm 6\sqrt{5}$	A1	2.2a
		(5)	
		(9	marks

(a)(i)

M1: Attempts to complete the square on by halving both x and y terms.

Award for sight of $(x \pm 5)^2$, $(y \pm 2)^2 = \dots$ This mark can be implied by a centre of $(\pm 5, \pm 2)$.

A1: Correct coordinates. (Allow x = 5, y = -2)

(a)(ii)

- M1: Correct strategy for the radius or radius². For example award for $r = \sqrt{\pm 5^{n^2} + \pm 2^{n^2} 11}$ or an attempt such as $(x-a)^2 - a^2 + (y-b)^2 - b^2 + 11 = 0 \Rightarrow (x-a)^2 + (y-b)^2 = k \Rightarrow r^2 = k$
- A1: $r = 3\sqrt{2}$. Do not accept for the A1 either $r = \pm 3\sqrt{2}$ or $\sqrt{18}$

The A1 can be awarded following sign slips on (5, -2) so following $r^2 = "\pm 5"^2 + "\pm 2"^2 - 11$

- (b) Main method seen
- M1: Substitutes y = 3x + k into the given equation (or their factorised version) and makes progress by attempting to expand the brackets. Condone lack of = 0
- A1: Correct 3 term quadratic equation.

The terms must be collected but this can be implied by correct a, b and c

M1: Recognises the requirement to use b² - 4ac = 0 (or equivalent) where both b and c are expressions in k. It is dependent upon having attempted to substitute y = 3x + k into the given equation
 M1: Solves 3TQ in k. See General Principles.

The 3TQ in k must have been found as a result of attempt at $b^2 - 4ac \dots 0$

A1: Correct simplified values

Look carefully at the method used. It is possible to attempt this using gradients

(b) Alt 1	$x^{2} + y^{2} - 10x + 4y + 11 = 0 \Longrightarrow 2x + 2y\frac{dy}{dx} - 10 + 4\frac{dy}{dx} = 0$	M1 A1	2.1 1.1b
	Sets $\frac{dy}{dx} = 3 \Rightarrow x + 3y + 1 = 0$ and combines with equation for C $\Rightarrow 5x^2 - 50x + 44 = 0$ or $5y^2 + 20y + 11 = 0$ $\Rightarrow x =$ or $y =$	M1	3.1a
	$x = \frac{25 \pm 9\sqrt{5}}{5}, \ y = \frac{-10 \pm 3\sqrt{5}}{5}, \ k = y - 3x \Longrightarrow k = \dots$	M1	1.1b
	$k = -17 \pm 6\sqrt{5}$	A1	2.2a

M1: Differentiates implicitly condoning slips but must have two $\frac{dy}{dx}$'s coming from correct terms

- A1: Correct differentiation.
- M1: Sets $\frac{dy}{dx} = 3$, makes y or x the subject, substitutes back into C and attempts to solve the resulting quadratic in x or y.
- M1: Uses at least one pair of coordinates and *l* to find at least one value for *k*. It is dependent upon having attempted both M's
- A1: Correct simplified values

(b) Alt 2	$x^{2} + y^{2} - 10x + 4y + 11 = 0 \Longrightarrow 2x + 2y\frac{dy}{dx} - 10 + 4\frac{dy}{dx} = 0$	M1 A1	2.1 1.1b
	Sets $\frac{dy}{dx} = 3 \implies x + 3y + 1 = 0$ and combines with equation for l y = 3x + k, x + 3y = 1 $\implies x = \dots$ and $y = \dots$ in terms of k	M1	3.1a
	$x = \frac{-3k-1}{10}, y = \frac{k-3}{10}, x^2 + y^2 - 10x + 4y + 11 = 0 \Longrightarrow k =$	M1	1.1b
	$k = -17 \pm 6\sqrt{5}$	A1	2.2a

Very similar except it uses equation for l instead of C in mark 3

M1 A1: Correct differentiation (See alt 1)

M1: Sets $\frac{dy}{dx} = 3$, makes y or x the subject, substitutes back into l to obtain x and y in terms of k

- M1: Substitutes for x and y into C and solves resulting 3TQ in k
- A1: Correct simplified values

(b) Alt 3	$y = 3x + k \Longrightarrow m = 3 \Longrightarrow m_r = -\frac{1}{3}$	M1
	$y+2 = -\frac{1}{3}(x-5)$	A1
	$(x-5)^{2} + (y+2)^{2} = 18, y+2 = -\frac{1}{3}(x-5)$	
	$\Rightarrow \frac{10}{9} (x-5)^2 = 18 \Rightarrow x = \dots \text{ or } \Rightarrow 10 (y+2)^2 = 18 \Rightarrow y = \dots$	M1
	$x = \frac{25 \pm 9\sqrt{5}}{5}, \ y = \frac{-10 \pm 3\sqrt{5}}{5}, \ k = y - 3x \Longrightarrow k = \dots$	M1
	$k = -17 \pm 6\sqrt{5}$	A1

M1: Applies negative reciprocal rule to obtain gradient of radius A1: Correct equation of radial line passing through the centre of C M1: Solves simultaneously to find x or y

Alternatively solves " $y = -\frac{1}{3}x - \frac{1}{3}$ " and y = 3x + k to get x in terms of k which they substitute in

 $x^{2} + (3x + k)^{2} - 10x + 4(3x + k) + 11 = 0$ to form an equation in k.

M1: Applies k = y - 3x with at least one pair of values to find k

A1: Correct simplified values