[4]

[6]

[3]

[3]

[5]

1. The functions f and g are defined for all real values of x by

$$f(x) = x^2 + 4ax + a^2$$
 and $g(x) = 4x - 2a$,

where a is a positive constant.

- i. Find the range of f in terms of a.
- Given that fg(3) = 69, find the value of a and hence find the value of x such that $g^{-1}(x) = x$. ii.
- 2. The functions f and g are defined as follows:

$$f(x) = 2 + \ln(x + 3) \text{ for } x \ge 0,$$

g(x) ax^2 for all real values of x, where a is a positive constant.

- Given that $gf(e^4 3) = 9$, find the value of a.
- ii. Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .
- Given that $ff(e^N 3) = In (53e^2)$, find the value of N. iii.
- 3. The functions f and g are defined for all real values of x by

$$f(x) = |2x + a| + 3a$$
 and $g(x) = 5x - 4a$,

where a is a positive constant.

- i. State the range of f and the range of g.
- State why f has no inverse, and find an expression for $g^{-1}(x)$. ii.
- iii. Solve for x the equation gf(x) = 31a.

[5]

[3]

[2]

© OCR 2017.

4.

The function f is defined as
$$f(x) = \frac{8}{x+2}$$
 for $x \ge 0$.

- (a) State the range of f. [1]
- (b) Find an expression for $f^{-1}(x)$. [2]
- (c) Solve the equation $f(x) = f^{-1}(x)$. [2]
- A sequence of three transformations maps the curve $y = \ln x$ to the curve $y = e^{3x} 5$. Give details of these transformations.

[4]

- 6. The function f is defined for all real values of x as $f(x) = c + 8x x^2$, where c is a constant.
 - (a) Given that the range of f is $f(x) \le 19$, find the value of c.

[3]

(b) Given instead that ff(2) = 8, find the possible values of c.

[4]

7. In this question you must show detailed reasoning.

The functions f and g are defined for all real values of x by

$$f(x) = x^3$$
 and $g(x) = x^2 + 2$.

- (a) Write down expressions for
 - (i) fg(x), [1]
 - (ii) gf(x). [1]
- (b) Hence find the values of x for which fg(x) gf(x) = 24. [6]

END OF QUESTION paper

Mark scheme

G	Questic	on	Answer/Indicative content	Marks	Guidance
1		i	Attempt completion of square at least as far as $(x + 2a)^2$ or differentiation to find stationary point at least as far as linear equation involving two terms	*M1	or equiv but amust be present
		i	Obtain $(x + 2a)^2 - 3a^2$ or $(-2a, -3a^2)$	A1	
		i	Attempt inequality involving appropriate y-value	M1	dep *M; allow <, > or \leq here; allow use of x ; or unsimplified equiv
					now with \geq ; here $x \geq -3\mathcal{E}$ is A0
					Examiner's Comments
		i	State $y \ge -3a^2$ or $f(x) \ge -3a^2$	A1	This apparently straightforward request was not answered well and 52% of candidates scored no marks. Whether the poor response was due to lack of knowledge of range or to the presence of the indeterminate constant a was not clear. Some candidates attempted to complete the square but this was not always done well and many did not know how to deduce the range from their version. The other popular approach involved differentiation; again candidates were not sure how to conclude and it was common for differentiation to lead to $x = -2a$ with a consequent statement that the range was $x > -2a$. An error that was seen many times in attempts to find the stationary point was $f'(x) = 2x + 4a + 2a$.
		ii	Attempt composition of f and g the right way round	*M1	algebraic or (part) numerical; need to see $4x - 2a$ replacing x at least once
		ii	Obtain or imply $16x^2 - 3x^2$ or $144 - 3x^2$	A1	or less simplified equiv but with at least the brackets expanded correctly
		ii	Attempt to find a from fg(3) = 69	M1	dep *M
		ii	Obtain at least <i>a</i> = 5	A1	
		ii	Attempt to solve $4x - 10 = x \frac{1}{4}(x+10) = x_{3r}$ $4x - 10 = \frac{1}{4}(x+10)$	M1	for their α , must be linear equation in one variable; condone sign slip in finding inverse of g
		ii	Obtain $\frac{10}{3}$	A1	and no other answer Examiner's Comments In contrast to part (i), this part was answered well with 45% of candidates earning all six marks. Many more earned four or five marks, only faltering towards the end of their solutions. The vast majority formed the composition of the functions the right way round and generally coped well with the algebraic simplification. There were some slips and a few equated fg(3) to 0 rather than to 69 but most reached $\mathscr{A} = 25$ without too much trouble. There was no penalty at this stage for stating $a = \pm 5$. neat use of $f(x)$ in its completed square form to produce $F g(x) = f(4x - 2a) = (4x - 2a + 2a)^2 - 3a^2 = 16x^2 - 3a^2$ was

	1		1	1	Functions
					noted a few times. Somewhat strangely, after finding a, a significant number of candidates did no more on this question or found an expression for $g^{-1}(x)$ but then did not consider the equation $g^{-1}(x) = x$. Of course, it is not necessary to find the inverse of g ; solving the equation $g(x) = x$ is an equivalent, and easier, process as a few alert candidates recognised.
			Total	10	
2		i	Obtain 6 or 2 + 4 at any stage for application off	B1	
		i	Attempt composition of functions the right way round	M1	
		i	Obtain $a = \frac{1}{4}$ or $\frac{9}{36}$ or equiv	A1	Examiner's Comments Some of the marks in this question were easily earned but there were other more demanding aspects. Only 12% of the candidates managed to earn all eleven marks. Part (i) was answered well, particularly by those candidates who simplified $f(e^4 - 3)$ as their first step. Those who formed $gf(x)$ and attempted to expand $a[2 + \ln(x + 3)]^2$ before any substitution for x had more scope for error. Almost all candidates recognised the composition of functions and applied f and g in the correct order. A moment's carelessness led a surprising number of candidates to follow with $1.36a = 9$ with $a = 4$.
		ii	Obtain expression involving e ^{y-2} or e ^{x-2}	M1	
		ii	Obtain e*-2 – 3	A1	
		ii	State $x \ge 2 + \ln 3$ or equiv	B1	Not for >; not for decimal equiv; using x Examiner's Comments The vast majority of candidates had no difficulty in finding $f^{-1}(x)$ but few were successful in stating the correct domain. Common responses were all real numbers, $x \ge 0$ and $x \ge -3$. Those candidates who recognised the link between the range of f and the domain of its inverse usually provided the correct answer.
		iii	Either:		
		iii	Apply f once to obtain 2 + N	B1	
		iii	Apply f to their expression involving N	M1	
		iii	Obtain 2 + $\ln(N + 5)$ or 2 + $\ln(2 + N + 3)$	A1	
		iii	Attempt solution of equation of form $2 + \ln(\rho N + q) = \ln(53e^2)$	M1	Involving manipulation so that value of N is apparent
		iii	Obtain 48 from correct work	A1	
		iii	Or 1:		
		iii	Obtain ff(x) of form $k_1 + \ln[k_2 + \ln(x + 3)]$	M1	Or equiv with immediate substitution for x ;

_____ Functions

		1	1	Functions
	iii	Obtain correct 2 + In[5 + In(x + 3)]	A1	missing bracket(s) may be implied by
	iii	Substitute for x to obtain 2 + $\ln(N + 5)$	A1	subsequent work
	iii	Attempt solution of equation of form $2 + \ln(pN + q) = \ln(53e^2)$	М1	Involving manipulation so that value of N is apparent Examiner's Comments Part (iii) was more challenging and 43% of the candidates earned all five marks. Different approaches were seen. Some started by forming $ff(x)$ before substituting $e^N - 3$ whereas another common method involved finding and simplifying $f(e^N - 3)$ before applying f for a second time. Candidates who simplified at each step fared better than those who constructed complicated expressions before attempting to deal with them. Attention to detail was needed too and some candidates made things difficult for themselves by not adding or subtracting f at appropriate stages. After applying f successfully, candidates were faced with the equation f and f successfully, and many were unable to deal with this correctly. All too common was a next step of f and f successfully f successfully f and f successfully f successfully f successfully f successfully f successfully f and f successfully f succe
				functions by taking the result in part (ii) to use $e^N - 3 = f^{-1}f^{-1}[\ln(53e^2)]$ as the method for finding the value of N .
	iii	Obtain 48 from correct work	A1	
	iii	Or 2:		
	iii	Apply f ⁻¹ to obtain e ^{ln(53e2)-2} – 3	B1	
	iii	Attempt simplification of expression involving In and e	M1	
	iii	Obtain $f(e^N - 3) = 50$	A1	
	iii	Apply f, or apply f ⁻¹ to right-hand side	M1	
	iii	Obtain 48	A1	
		Total	11	
3	i	State range of f is $f(x) \ge 3a$ or $y \ge 3a$	B1	Allow $f \ge 3a$ or equiv expression in words but $3a$ to be included
	i	State range of g is all real numbers or equiv such as $y \in \mathbb{R}$ (real numbers)	B1	
	ii	State function is not 1 – 1 or different <i>x</i> -values give same <i>y</i> -value or equiv	B1	no credit for 'no inverse due to modulus' nor for 'cannot be reflected across $y = x'$
	ii	Obtain form $k(y + 4a)$ or $k(x + 4a)$	M1	for non-zero constant <i>k</i>
	ii	Obtain $\frac{1}{5}(x+4a)$ or $\frac{1}{5}x+\frac{4}{5}a$	A1	Must finally be in terms of x
	iii	Either Attempt composition of functions the right way round	M1	Earned for 5(what they think $f(x)$ is) – $4a$
	iii	Obtain 5 2x + a + 11a = 31a or equiv	A1	

with $(2x+a)^2$; others treated the modulus signs as brackets and proceeded to solve 5(2x+4a)-4a=31a, an approach which does give one of the solutions of the equation. For those candidates reaching the stage |2x+a|=4a, it was encouraging to note that the majority proceeded without fuss to solve the two linear equations 2x+a=4a and 2x+a=-4a. Those opting to square both sides of |2x+a|=4a did not fare so well, not always being able to cope with the quadratic equation involving both x and a. A few candidates mistakenly decided to reject the answer $-\frac{5}{2}a$ at the end, apparently believing

ı	ı	ı	1	ı :		Functions
					that the presence of modulus signs in the question meant that nothing could be negative.	
			Total	10		
4		а	(0, 4]	B1(AO2.5)	Do not allow $0 < f(x) \le 4$	
		b	$f^1(x) = \frac{8}{x} - 2$	M1(AO1.1a) A1(AO1.1) [2]	Obtain $\frac{8}{x} \pm 2$ Obtain correct inverse function	Allow in terms of y Must now be in terms of x
		С	$x = \frac{8}{x+2}$ $x^2 + 2x - 8 = 0$	M1(AO1.1a)	Equate two of x , $f(x)$ and $f^{-1}(x)$ and attempt to solve	
			<i>x</i> = 2	A1(AO2.3) [2]	Obtain $x = 2$ only	AO if $x = -4$ also given
			Total	5		
5			Reflection, stretch and translation (reflection) in the line $y = x$ (stretch) scale factor $\frac{1}{3}$ parallel to the x -axis (translation) $\begin{pmatrix} 0 \\ -5 \end{pmatrix}$	B1(AO2.5) B1(AO1.1) B1(AO1.1)	Accept 'in the x-direction' accept 'factor' or 'SF' for 'scale factor' Accept '5 units in the negative y-direction' or '55 units	Do not accept any other wording Do not accept 'in/on/across/up the x-axis' or '\frac{1}{3} units' Do not accept 'in/on/across/up the y-axis'

	1	ı				Functions
					transformations must be correct for all 4 marks to be awarded	
			Total	4		
				M1* (AO 3.1a)		Full attempt to complete the square Could differentiate, equate to 0 and solve to get 8 – 2x
			$f(x) = C + 16 - (x - 4)^2$	M1d* (AO 1.1a)	Attempt to identify maximum point	= 0, so x = 4 Link the constant term of their completed square to 19 – must involve c Allow equation or inequality (including incorrect inequality)
6		а	c + 16 = 19	A1	Link maximum point to 19	If using differentiation then link f(their $x = 4$) to 19
			C = 3	(AO 1.1)	Solve to obtain $c = 3$	A0 if given as inequality unless subsequently corrected Must come from fully correct working, so $f(x) = c + 16 - (x + 4)^2$, leading to $c + 16 = 19$ hence $c = 3$ is M1 M1 A0 OR M1* Attempt to use $b^2 - 4ac = 0$ on
				[3]		$b^2 - 4ac = 0$ on their attempt at $f(x)$ -19 = 0 M1d* Attempt to
1		<u> </u>			•	

				1	Functions
				Examiner's Comments Many fully correct solutions to this quemploying a variety of different methapproaches were to write f(x) in comments.	nods. The most common
				maximum value to 19, or to use different point. Some candidates attempted and attempted to use the discrimination that the condition for repeated roots	erentiation to identify the maximum rearranged to obtain $f(x) - 19 \le 0$ ant, but only the most able identified
			B1 (AO 1.1)		Stated or implied by being used in later method
			M1* (AO 1.2)	Correct f(2)	Must be attempt at composition of functions so M0 for $\{f(2)\}^2$
		$f(2) = c + 12$ $f(c + 12) = c + 8(c + 12) - (c + 12)^{2}$	M1d* (AO 1.1a)	Attempt correct composition of ff	Expand and rearrange to a three term quadratic Could be implied
	b	$-48 - 15c - c^2 = 8$		Equate to 8 and rearrange to useable form	by the two correct roots
		$c^2 + 15c + 56 = 0$ $c = -7, c = -8$	A1 (AO 2.1)	Both correct values for <i>c</i>	OR for the first two marks M1* Attempt ff(x) ie attempt at ff(x) = $c + 8(c + 8x - x^2) - (c + 8x - x^2)^2$
					M1d* Attempt ff(2) using their ff(x), which may no longer be correct
			[4]	Examiner's Comments	

				Functions	
				All candidates understood the meaning of ff(2) and were able to attempt the correct process for the composition of functions. The more successful method was to first find f(2), simplify this to $c+12$ and then attempt f($c+12$). Candidates who attempted to find ff(x) before substituting $x=2$ were more likely to make mistakes when simplifying their algebraic expression. It was expected that candidates would use their calculators to solve the quadratic equation, but the vast majority instead showed full detail of the method used.	
		Total	7		
7	а	(i) $fg(x) = f(x^2 + 2) = (x^2 + 2)^3$	B1(AO 1.1)E [1]	Examiner's Comments Nearly all candidates correctly found the composite function fg(x) as (x² + 2)³ although a number did expand the bracket in this part. Candidates are reminded that the number of marks available for a question or part–question are the best indicators to the amount of working and detail that is required.	
		(ii) $gf(x) = g(x^3) = (x^3)^2 + 2(=x^6 + 2)$	B1(AO 1.1)E [1]	No simplification required Examiner's Comments Once again this was nearly always done correctly with the most common errors being those minority of candidates who stated that $(x^2)^3$ was equal to either x^5 or x^8 .	
	b	DR $(x^{2} + 2)^{3} = (x^{2})^{3} + 3(x^{2})^{2} (2) + 3(x^{2}) (2)^{2} + 2^{3}$ $fg(x) = x^{6} + 6x^{4} + 12x^{2} + 8$ $fg(x) - gf(x) = 24 \Rightarrow 6x^{4} + 12x^{2} - 18 = 0$ $x^{4} + 2x^{2} - 3 = 0 \Rightarrow (x^{2} - 1)(x^{2} + 3) = 0$	M1(AO 1.1)E A1(AO 1.1)C A1(AO 2.1)C	Binomial expansion of their $(x^2 + 2)^3$ – correct powers and coefficients	
			M1(AO 1.1)C	Correct method for solving their If M0 next two	

		1		Functions
	$x^2 + 3 = 0$ has no real solutions $x^2 - 1 = 0 \Rightarrow x = \pm 1$	A1(AO 2.4)A A1(AO 2.2a)A	quadratic in x^2 $x^2 + 3 \neq 0$ is acceptable for this mark	marks become B marks
		[6]	Examiner's Comments	
			There were a significant number of a correct bracketing and mistakenly w	, ,
			$(x^2 + 2)^3 - (x^6 + 2) = 24 \Rightarrow (x^2 + 2)^3 - x^6 - 2 = 24.$	
			The majority of candidates went for the bracket three times rather than $(b)^n$.	, , , ,
			While the majority rearranged their of $12x^2 - 18 = 0$ there were a number sufficient working in solving this quarequired detailed reasoning.	of candidates did not show
			Finally, it is expected at this level that candidates should justify why $x^2 + 3$	
	Total	8		