
[2]

[4]

- 1. Express 1 < x < 3 in the form |x a| < b, where *a* and *b* are to be determined.
- 2. Solve the equation |3 2x| = 4|x|.
- 3. Fig. 1 shows the graphs of y = |x| and y = a|x + b|, where *a* and *b* are constants. The intercepts of y = a|x + b| with the *x* and *y*-axes are (-1, 0) and $(0, \frac{1}{2})$ respectively.

i. Find *a* and *b*.

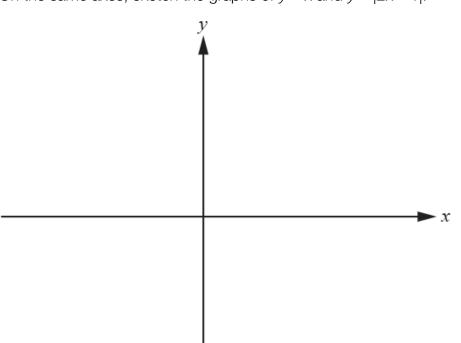
[2]

[4]

[4]

[4]

ii. Find the coordinates of the two points of intersection of the graphs.


4. You are given that gf(x) = |3x - 1|, for $x \in \mathbb{R}$.

- (a) Given that f(x) = 3x 1, express g(x) in terms of x. [1]
- (b) State the range of gf(x). [1]
- (c) Solve the inequality |3x-1| > 1. [4]
- 5. Solve the inequality $|2x-1| \ge 4$.
- 6. By sketching the graphs of y = |2x + 1| and y = -x on the same axes, show that the equation |2x + 1| = -x has two roots. Find these roots.

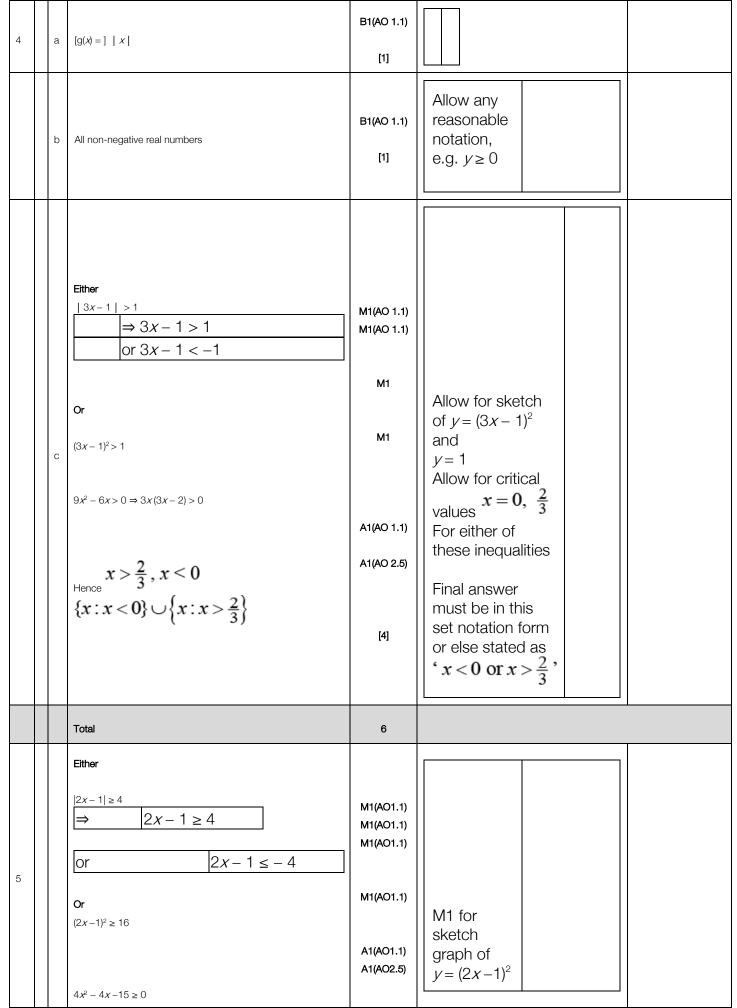
[3]

[2]

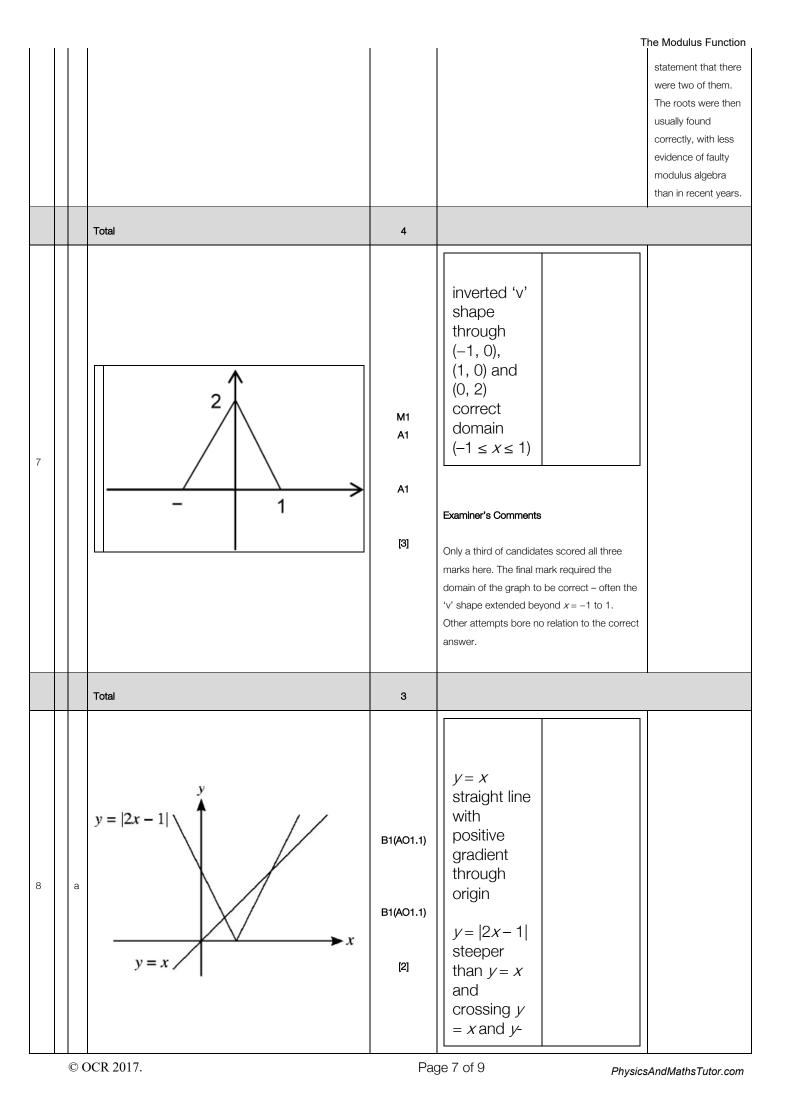
- 7. The function f(x) is defined by f(x) = |x|, for $-1 \le x \le 1$. Sketch the graph of y = g(x), where g(x) = 2 - 2f(x).
- 8. (a) On the same axes, sketch the graphs of y = x and y = |2x 1|.

	(b) In this question you must show detailed reasoning.	
	Solve the inequality $ 2x - 1 > x$.	[4]
9.	Solve the equation $ 2x + 1 < 5$.	[3]

10. Solve the equation |4x - 5| = 3.


END OF QUESTION paper

[3]


Mark scheme

Qu	Question		Answer/Indicative content	Marks	Part marks and guidance	
1			$1 < x < 3 \Rightarrow -1 < x^2 < 1$		oe	
			$\Rightarrow x-2 > 1$	B1 B1	[or $a = 2$ and $b = 1$] Examiner's Comments The non-standard nature of the question made this one of the harder section A questions. Some candidates were able to write the answer down while others used an algebraic approach.	
			Total	2		
2			3 - 2x = 4 x $\Rightarrow 3 - 2x = 4x, x = \frac{1}{2}$	M1A1		lf 3 or more final answers offered, – 1 for
			or $3 - 2x = -4x$, $x = -1\frac{1}{2}$	M1A1	not 3/(3 – 2)	each incorrect additional answer - 1 for final ans
			Or			written as an inequality
			$(3 - 2x)^2 = 16x^2$	M1	squaring both sides	$(3 - 2x)^2 = 4x^2$ is M0
			$\Rightarrow 12x^2 + 12x - 9 [= 0]$	A1	correct quadratic o.e. but with single x^2 term	
			$\Rightarrow x = \frac{1}{2}, -1\frac{1}{2}$	A1 A1	Examiner's Comments Although plenty of candidates scored full marks with apparent ease, there were all sorts of errors as well. Some clearly do not understand the modulus function; many duplicate work by solving 4 equations from $\pm (3 - 2x) = \pm 4x$, and in the process produced additional solutions due to poor algebra. A surprisingly common error was to write $3 = 6x \Rightarrow x = 2!$ Some even discounted the solution $x = -3/2$ on the grounds that answers to a modulus question need to be positive! Squaring both sides was seen occasionally, and although this method is somewhat long-winded, it does avoid conceptual errors such as $ 3 - 2x = 3 + 2x$.	

				The Modulus Function
		Total	4	
3	i	$a = \frac{1}{2}$	B1	or 0.5
				Examiner's Comments
	i	<i>b</i> = 1	B1	Some candidates were able to write down the correct values of <i>a</i> and <i>b</i> . Those who chose to use transformation arguments sometimes confused the stretch ($1/2$ or 2) and the translation (+1 or -1). Others chose to substitute the coordinates of specific points, with variable success.
	ï	$\frac{1}{2} x+1 = x $ $\Rightarrow \frac{1}{2} (x+1) = x,$	M1	o.e. ft their $a (\neq 0)$, b (but allow recovery to correct values) or verified by subst $x = 1$, $y = 1$ into $y = \frac{1}{2} x + 1 $ and $y = x $
	ii	$\Rightarrow x = 1, y = 1$	A1	unsupported answers M0A0
	ii	or $\frac{1}{2}(x+1) = -x$,	M1	o.e., ft their <i>a. b</i> ; or verified by subst (-1/3, 1/3) into $y = \frac{1}{2} x + 1 $ and $y = x $
	ii	$\Rightarrow x = -1/3, y = 1/3$	A1	or 0.33, -0.33 or better unsupported answers M0A0
	ii	$ or \frac{1}{4}(x+1)^2 = x^2 $	M1	ft their <i>a</i> and <i>b</i>
	ii	$\Rightarrow 3x^2 - 2x - 1 = 0$	M1ft	obtaining a quadratic = 0, ft their previous line, but must have an x^2 term
	ii	$\Rightarrow x = -1/3 \text{ or } 1$	A1	SC3 for (1, 1) (-1/3, 1/3) and one or more additional points
	ii	<i>y</i> = 1/3 or 1	A1	Examiner's Comments Most candidates, who knew what they were doing here either used $\frac{1}{2}(x + 1) = \pm x$ or squared both sides to find a quadratic in <i>x</i> . In the latter approach, some forgot to square the $\frac{1}{2}$ and got the wrong quadratic. Examiners followed through their values for <i>a</i> and <i>b</i> . Some candidates omitted the <i>y</i> - coordinates. Candidates who found (1, 1) without showing a valid method got no marks, and there was evidence of the usual mistakes in using modulus, such as $ x + 1 =$ x + 1, etc.
		Total	6	

				The Modulus Function
	$(2x-5)(2x+3) \ge 0$ $\Rightarrow x \ge 2\frac{1}{2}$ $x \ge x \le -1\frac{1}{2} \cup \{x \ge 2\frac{1}{2}\}$	[4]	and y = 16 M1 for $x = 2\frac{1}{2}, -$ $1\frac{1}{2}$	
			OR $x \ge 2\frac{1}{2}$ or $x \le -\frac{1\frac{1}{2}}{1}$ If final ans not in one of these forms then withhold final A1	
	Total	4		
6		M1	Sketch of $y = 2x + 1 $	condone no intercept labels, but must be a 'V' shape with vertex on –ve <i>x</i> axis
		A1	y = -x and two intersections indicated	
	<i>x</i> = -1	B1	not from ww, condone (–1, 1)	squaring: $(2x + 1)^2 =$ $x^2 \Rightarrow 3x^2 + 4x + 1 =$ 0
	<i>x</i> = -1/3	B1	not from ww, condone (–1/3, 1/3)	$\Rightarrow (3x + 1)(x + 1) = 0, x = -1, -1/3$ Examiner's Comments Sketches of the modulus function with $y = -x$ were generally well done, though quite a few lost a mark for neither clearly indicating the intercepts nor making a clear

	1				The Modulus Function
				axis as shown	
	b	DR 2x-1 > x -(2x-1) > x Hence $x > 1, \frac{1}{3} > x$ $\left\{ x : x < \frac{1}{3} \right\} \cup \left\{ x : x > 1 \right\}$	M1(AO1.1) M1(AO1.1a) A1(AO1.1) A1(AO2.5) [4]	Allow $2x - 1 = x$ Allow $-(2x - 1) = x$ For either of these inequalities Must be in this set notation form or else stated as ' $x < \frac{1}{3}$ or $x > 1$ '	
		Total	9		
9		-5 < 2 <i>x</i> + 1 < 5 -6 < 2 <i>x</i> < 4 -3 < <i>x</i> < 2	M1 (AO 2.1) A1 (AO 1.1) A1 (AO 1.1) [3]	$-(2x+1) <$ 5 oe and $2x+1 < 5$ -3 and 2 identifiedor 2 $(2x + 1)^2 < 25$ -3 and 2 identifiedif MO allow B1 for either condition identified $-3 < x < 2$ allow $x > -$ 3 and $x < 2$ or 2 $(2x + 1)^2 < 25$ 3 and 2 identifiedif MO allow B1 for either condition identified $-3 < x < 2$ allow $x > -$ 3 and $x < 2$ if MO allow B1 for either condition identifiedExaminer's CommentsThis question proved routine for the majority of candidates.	
		Total	3		
10		Either $4x - 5 = 3$ giving $x = 2$	B1 (AO 1.1) M1 (AO 1.1a)	For answer x = 2 www May be	
		Or $4x - 5 = -3$ 4x = 2 giving $x = 0.5$	A1 (AO 1.1) [3]	implied	

The	Modulus	Function
THE	modulus	i unction

	Total	3	