1. i. The function f(*x*) is defined by

$$\mathbf{f}(\mathbf{x}) = \frac{1-x}{1+x}, \, \mathbf{x} \neq -1.$$

Show that f(f(x)) = x.

Hence write down $f^{-1}(x)$.

ii. The function g(x) is defined for all real x by

$$g(x) = \frac{1-x^2}{1+x^2}.$$

Prove that g(x) is even. Interpret this result in terms of the graph of y = g(x).

2. The function f (x) is defined by f (x) = $x^3 - 4$ for $-1 \le x \le 2$. For f⁻¹(x), determine

- The domain
- The range.

3. Functions f(x) and g(x), each defined for -1 < x < 1, are given by $f(x) = \ln(1 - x)$ and $g(x) = x^2$.

- (i) Find $f^{-1}(x)$ and state its domain and range.
- (ii) Show that f(x) + f(-x) = fg(x).

END OF QUESTION paper

[3]

[3]

[5]

[4]

[3]

Mark scheme

Question		n	Answer/Indicative content	Marks	Part marks and guidance	
1		i	$ff(x) = f(\frac{1-x}{1+x}) = \frac{1 - \frac{1-x}{1+x}}{1 + \frac{1-x}{1+x}}$	M1	substituting $(1 - x)/(1 + x)$ for x in f(x)	
		i	$=\frac{1+x-1+x}{1+x+1-x}=\frac{2x}{2}=x^*$	A1	correctly simplified to <i>x</i> NB AG	
					or just $f^{-1}(x) = f(x)$	
					Examiner's Comments	
		i	f(x) = f(x) = (1 - x)/(1 + x)	B1	Most candidates gained a method mark for substituting $(1-x)/(1+x)$ for x in f(x). However, the simplification of the ensuing algebraic fraction proved to be problematic to many candidates, who failed to clear the subsidiary denominators correctly. Concluding that f-1(x) = f(x) should of course be a 'write down' from ff(x) = x; however, virtually all candidates found f-1(x) by rearranging the formula for x = f(y), usually correctly. Occasionally we were	
			$1 - (-x)^2$		offered $f-1(x) = 1/f(x) = (1+x)/(1-x)$.	
		ii	$g(-x) = \frac{1 - (-x)}{1 + (-x)^2}$	M1	substituting $-x$ for x in $g(x)$ condone use of 'f' for g	if brackets are omitted or misplaced allow M1A0
		ii	$=\frac{1-x^2}{1+x^2}=g(x)$	A1	must indicate that $g(-x) = g(x)$ somewhere	condone use of 'f' for g
					allow 'reflected', 'reflection' for symmetrical	
					Examiner's Comments	
		ii	Graph is symmetrical about the <i>y</i> -axis.	B1	This was well answered, with few candidates using particular values of x to 'show' that $g(x)$ was even. We condoned the use of f instead of g. Occasionally the brackets were misplaced in $1 - (-x)^2$ or $1 + (-x)^2$. The geometrical interpretation was well answered: although we would prefer 'symmetrical about the y-axis' to formulations such as 'reflection in the	must state axis (y-axis or $x = 0$)

				y-axis',the latter was nevertheless	
				condoned.	
		Total	6		
2		$y = x^{3} - 4 x \ll y$ $x = y^{3} - 4$ $\Rightarrow x + 4 = y^{3}$ $\Rightarrow y = \sqrt[3]{x + 4}_{so}$ $f^{-1}(x) = \sqrt[3]{x + 4}$ range of f is $-5 \le y \le 4$ so domain of f ⁻¹ is $-5 \le x \le 4$ range is $-1 \le y \le 2$	M1(AO1.1) A1(AO1.1) M1(AO1.1) A1(AO1.2) B1(AO1.1) [5]	attempt to invert accept $y = \sqrt[3]{x+4}$ but not $x = \sqrt[3]{y+4}$ May be implied or [-5, 4] or -1 $\leq f^{-1}(x) \leq 2$ 2 or [-1, 2]	
		Total	5		
3	i	$y = \ln(1 - x) \times \textcircled{o} y$ $x = \ln(1 - y)$ $\Rightarrow e^{x} = 1 - y$ $\Rightarrow y = 1 - e^{x} [\text{so } f^{-1}(x) = 1 - e^{x}]$ domain $x < \ln 2$ range $-1 < y < 1$	M1 A1 B1 B1	Or $e^y =$ can interchange x and y at $1 - x$ interchange x and y at $y = 1 -$ any stage e^x or $f^{-1}(x)$ any stage $= 1 - e^x$ $x \le \ln 2$ isallow xB0, ln< 0.693	

© OCR 2017.

				f ⁻¹ (x) for range. Examiner's Comments The first two marks for finding the inverse function were nearly always gained. However, accurate notation for the domain and the range was not often seen. Not many candidates scored full marks, with the domain proving particularly awkward to get right.
	ï	$f(-x) = \ln (1 + x)$ $fg(x) = \ln(1 - x^{2})$ $\ln(1 - x) + \ln (1 + x) = \ln (1 - x)(1 + x)$ $= \ln(1 - x^{2})$	B1 B1 [3]	soi e.g. from ln $(1 - x) +$ $\ln(1 + x)$ must include brackets must include bracketsExaminer's CommentsMany candidates got all three marks here, though the structure of their 'show' was sometimes weak. Very occasionally we saw fg(x) = ln(1 - x)^2.
		Total	7	