- 1. The quadratic equation $kx^2 + (3k 1)x 4 = 0$ has no real roots. Find the set of possible values of *k*.
- 2. i. Express $3x^2 + 9x + 10$ in the form $3(x + p)^2 + q$.

[3]

[7]

ii. State the coordinates of the minimum point of the curve $y = 3x^2 + 9x + 10$.

[2]

iii. Calculate the discriminant of $3x^2 + 9x + 10$.

[2]

[5]

[5]

[4]

[5]

- 3. Solve the equation $8x^6 + 7x^3 1 = 0$.
- 4. Find the real roots of the equation $4x^4 + 3x^2 1 = 0$.
- 5. Express $5x^2 + 10x + 2$ in the form $p(x + q)^2 + r$, where p, q and r are integers.
- 6. Solve the equation $x^{\frac{2}{3}} x^{\frac{1}{3}} 6 = 0$.
- 7. Find the set of values of k for which the equation $x^2 + 2x + 11 = k(2x 1)$ has two distinct real roots.
- 8. i. Express $4 + 12x 2x^2$ in the form $a(x + b)^2 + c$.

[7]

Quadratic Functions ii. State the coordinates of the maximum point of the curve $y = 4 + 12x - 2x^2$.

9. Solve the equation
$$2y^{\frac{1}{2}} - 7y^{\frac{1}{4}} + 3 = 0$$
. [5]

^{10.} Show that, for all values of k, the equation
$$x^2 + (k-5)x - 3k = 0$$
 has real roots. [6]

- 11. (a) Express $2x^2 + 4x + 5$ in the form $p(x + q)^2 + r$, where p, q and r are integers. [4]
 - (b) State the coordinates of the turning point on the curve $y = 2x^2 + 4x + 5$. [2]
 - (c) Given that the equation $2x^2 + 4x + 5 = k$ has no real roots, state the set of possible values of the constant k. [1]

12. Find the roots of the equation
$$4t^{\frac{2}{3}} = 15 - 17t^{\frac{1}{3}}$$
. [5]

13. (a) Express $4x^2 - 12x + 11$ in the form $a(x + b)^2 + c$.

- (b) State the number of real roots of the equation $4x^2 12x + 11 = 0$.
- (c) Explain fully how the value of *r* is related to the number of real roots of the equation $p(x + q)^2 + r = 0$ where *p*, *q* and *r* are real constants and p > 0.

[3]

[1]

[2]

[2]

Quadratic Functions

[4]

[3]

- 14. (a) Express $2x^2 12x + 23$ in the form $a(x + b)^2 + c$.
 - (b) Use your result to show that the equation $2x^2 12x + 23 = 0$ has no real roots. [1]
 - (c) Given that the equation $2x^2 12x + k = 0$ has repeated roots, find the value of the constant k. [2]
- 15. (a) Show that $4x^2 12x + 3 = 4\left(x \frac{3}{2}\right)^2 6$
 - (b) State the coordinates of the minimum point of the curve $y = 4x^2 12x + 3$. [2]

END OF QUESTION paper

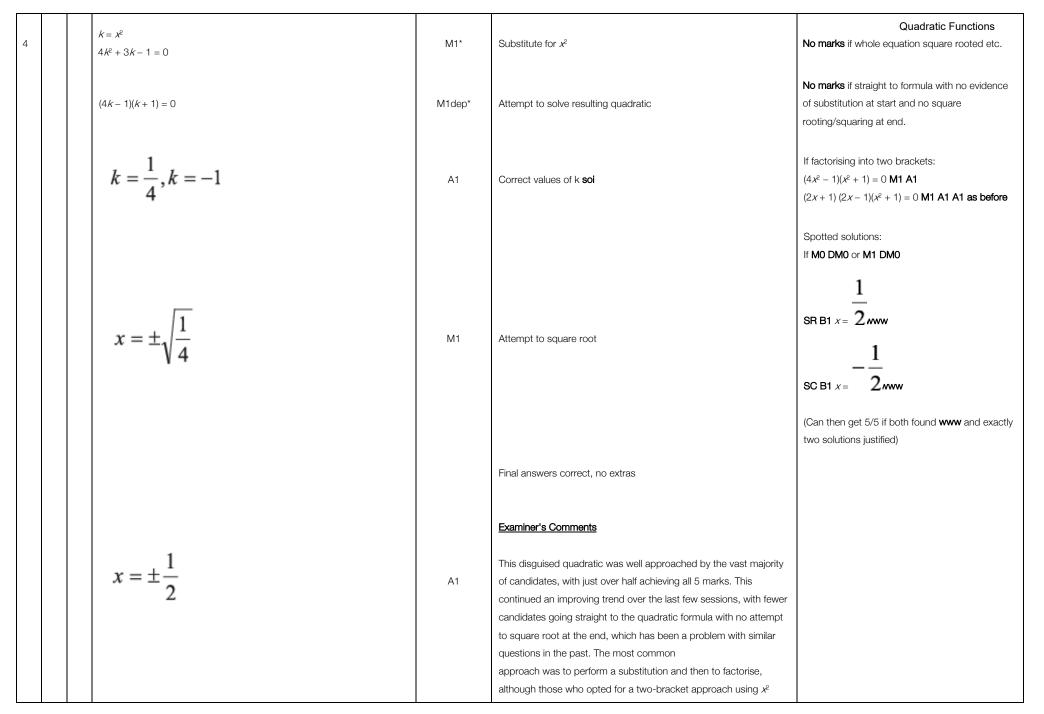
Mark scheme

Question	Answer/Indicative content	Marks	Part marks and guidance		
1	$(3k-1)^2 - 4 \times k \times - 4$	*M1	Attempts $b^2 - 4ac$ or an equation or inequality involving b^2 and $4ac$. Must involve k^2 in first term (but no <i>x</i> anywhere). If $b^2 - 4ac$ not stated, must be clear attempt.	Must be working with the discriminant explicitly and not only as part of the quadratic formula. Allow $\sqrt{b^2 - 4ac}$ for first M1 A1	
	$=9k^{2}+10k+1$	A1	Correct discriminant, simplified to 3 terms		
	$9k^2 + 10k + 1 < 0$	M1	States discriminant < 0 or b^2 < 4 <i>ac</i> .	Can be awarded at any stage. Doesn't need first M1. No square root here	
	(9k+1)(k+1) < 0	DM1	Correct method to find roots of a three term quadratic		
	$-1, -\frac{1}{9}$ $-1 < k < -\frac{1}{9}$	A1	Both values of <i>k</i> correct		
	$-1 < k < -\frac{1}{9}$	M1	Chooses "inside region" of inequality	Allow correct region for their inequality	
			Allow		
			$k < -\frac{1}{9}$ and $k > -1$ "	Do not allow	
		A1	etc. must be strict inequalities for A mark	" $k < -\frac{1}{9}$ or $k > -1$ ";	
			Examiner's Comments		
			This unstructured question proved to be very demanding. Most candidates recognised the need to find the discriminant and the		

				majority realised that this needed to be less than zero. Given that both terms involved algebraic manipulation, determining the discriminant proved challenging to a large number of candidates. Similarly, the solution of the resulting quadratic inequality proved challenging, with added difficulty seeming to result from the fact that both roots were negative; a significant number thought that $-\frac{1}{9}$ was less than -1, showing these roots in the wrong positions on the x-axis and getting the inequality the wrong way round when their intention was to choose the inside region. The best candidates handled all these obstacles well and produced short fluent solutions gaining all seven marks (as achieved by around one-third of candidates); some candidates were unable to start the question at all, instead trying to solve the equation using the quadratic formula.	Quadratic Functions
		Total	7		
2	i	$3(x^{2} + 3x) + 10$ = $3\left(x + \frac{3}{2}\right)^{2} - \frac{27}{4} + 10$ = $3\left(x + \frac{3}{2}\right)^{2} + \frac{13}{4}$	B1 M1 A1	$\left(x + \frac{3}{2}\right)^2$ 10-3p ² or $\frac{10}{3} - p^2$ Allow $p = \frac{3}{2}, q = \frac{13}{4}$ A1 www	If <i>p</i> , <i>q</i> found correctly, then ISW slips in format. $3(x + 1.5)^2 - 3.25$ B1 M0 A0 3(x + 1.5) + 3.25 B1 M1 A1 (BOD) $3(x + 1.5x)^2 + 3.25$ B0 M1 A0 $3(x^2 + 1.5)^2 + 3.25$ B0 M1 A0 $3(x - 1.5)^2 + 3.25$ B0 M1 A1 (BOD) $3 x (x + 1.5)^2 + 3.25$ B0M1A0
	i			Examiner's Comments The fact that the first digit was given in this "completing the square" question appeared to ease the difficulty somewhat, but this is still an area which many candidates find difficult with less than two-	

				thirds achieving full marks. Identifying the value of <i>p</i> was usually very well done; the problems usually occurred in the calculation of <i>q</i> , with both arithmetic problems, particularly with the squaring, and structural misunderstanding when the candidates failed to multiply by 3.	Quadratic Functions
	ii	$\left(-\frac{3}{2},\frac{13}{4}\right)$	B1	FT i.e. – their p	If restarted e.g. by differentiation:
				FT i.e. their q	
				Examiner's Comments	
	ii		B1	This question provided a follow through from the previous part which enabled many candidates with poor arithmetic to earn credit for their understanding of the relationship between the format and the graph. Many secured both marks as a result. Those who re- started by differentiation were usually less successful, again due to the difficulties with the fraction work.	Correct method to find <i>x</i> value of minimum point M1 Fully correct answer www A1
	iii	9 ² - (4 × 3 × 10)	M1	Uses $b^2 - 4ac$	Use of $\sqrt{b^2-4ac}$ s MO unless recovered
				Ignore > 0, < 0 etc. ISW comments about number of roots	
				Examiner's Comments	
	iii	= -39	A1	Most candidates are familiar with the term discriminant and only a few erroneously used $\sqrt{b^2 - 4ac}$. Around one in ten candidates substituted correctly but then made arithmetical errors. Commonly seen was 9 ² = 49 and the subtraction 81 – 120 often resulted in 39 or ±49 or ±41.	
		Total	7		

3	$k = x^3$ $8k^2 + 7k - 1 = 0$	M1*	Use a substitution to obtain a quadratic or factorise into 2 brackets each containing x^a	Quadratic Functions No marks if whole equation cube rooted etc. No marks if straight to formula with no evidence of substitution at start and no cube rooting / cubing at end
	(8k-1)(k+1) = 0	DM1*	Correct method to solve a quadratic	
	$k = \frac{1}{8}, \ k = -1$	A1	Both values of <i>k</i> correct	Spotted solutions:
		M1	Attempt to cube root at least one value to obtain <i>x</i>	If M0 DMO or M1 DM0 SC B1 $x = -1$ www
			Both values of <i>x</i> correct and no other values	
			Examiner's Comments	
	$x = \frac{1}{2}, x = -1$	A1	This disguised quadratic was approached well by the vast majority of candidates, with about twothirds achieving all five marks. It was very rare to see candidates leap straight to the quadratic formula with no attempt to find the cube roots at the end, which has been a problem with similar questions in the past. Most candidates opted to perform a substitution and then to factorise, although those who opted for a two-bracket approach using x^3 were also often successful. Some candidates who used the quadratic formula failed to deal accurately with $a = 8$, but most earned the first three marks with apparent ease. Thereafter a small number of candidates opted to cube rather than find cube roots, but the main loss of credit was due to lack of accuracy at the end. Theassertion "you can't cube root a negative number" was seen regularly; $\sqrt[3]{\frac{1}{8}} = \pm \frac{1}{2}$ was less common but not rare. This confusion between cube and square roots clearly needs addressing as it let down an otherwise well-answered question where only the very lowest-scoring candidates made no progress at all.	SC B1 $x = \frac{1}{2}$ www (Can then get 5/5 if both found www and exactly two solutions justified)
	Total	5		



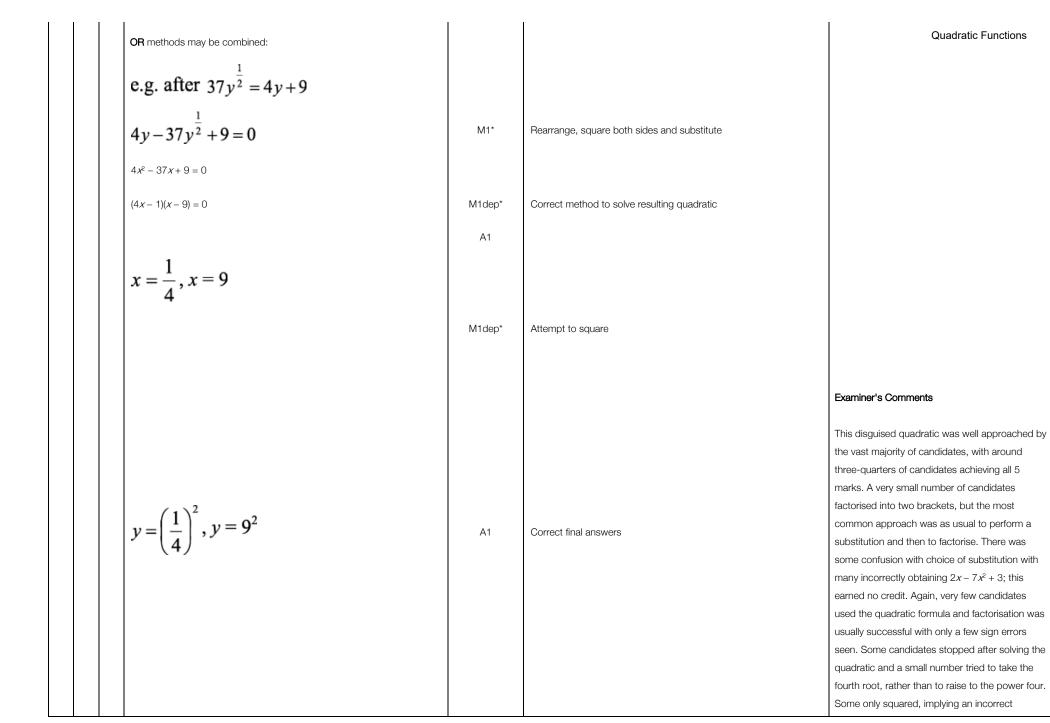
				were also often successful. Fewer candidates than in previous sessions used the quadratic formula; those that did were usually successful. Completing the square was rarely seen. Only a small number of candidates opted to square rather than square root, but the main loss of credit was due to lack of accuracy at the end. Although most candidates correctly ismissed any roots from $x^2 = -1$, some did not. More common was the absence of the negative square root	Quadratic Functions
		Total	5		
5		$5x^2 + 10x + 2 = 5(x^2 + 2x) + 2$	B1	ρ = 5	If p , q and r found correctly, then ISW slips in format. $5(x + 1)^2 + 3$ B1 B1 M0 A0 5(x + 1) - 3 B1 B1 M1 A1 (BOD) $5(x + 1 x)^2 - 3$ B1 B0 M1 A0 $5(x^2 + 1)^2 - 3$ B1 B0 M1 A0 $5(x - 1)^2 - 3$ B1 B0 M1 A0 $5(x - 1)^2 - 3$ B0 B1 M1 A0
		$=5[(x+1)^2-1]+2$	B1	<i>q</i> = 1	
		$=5(x+1)^2-3$	M1	$\frac{2}{2-5}$ "their <i>q</i> " ² or $\frac{5}{5}$ "their <i>q</i> " ² Must be evidence of squaring <i>r</i> = -3 Examiner's Comments This "completing the square" question was tackled well by the majority of candidates, many securing all four marks. In keeping with previous sessions, almost all earned the first two marks, seeing that <i>p</i> was 5 and <i>q</i> was 1, although <i>q</i> = 5 was seen relatively often among weaker candidates. Failure to multiply by five when working out the constant was the most common error amongst candidates who did not achieve full marks. Those	

				who took out 5 as a factor of the full expression often made errors with the resulting fractions.	Quadratic Functions
			A1		
		Total	4		
6		$k = x^{\frac{1}{3}}$	M1*	Use a substitution to obtain a quadratic, or factorise into 2 brackets $\frac{1}{3}$ each containing χ^3	No marks if whole equation cubed / rooted etc. No marks if straight to quadratic formula with no evidence of substitution at start and no cube rooting / cubing at end.
		$k^{2} - k - 6 = 0$ (k - 3)(k + 2) = 0	M1dep	Attempt to solve resulting three-term quadratic – see guidance in appendix 1	
		k = 3, k = -2	A1	Correct values of k	Spotted solutions: If M0 DMO or M1 DM0
		$x = 3^3, x = -2^3$	M1	Attempt to cube at least one value	SC B1 <i>x</i> = 27 www
				Final answers correct ISW	
		<i>x</i> = 27, <i>x</i> = -8	A1	Examiner's Comments This disguised quadratic was well approached by the vast majority of candidates. The most common approach was to perform a substitution and then to factorise, although some candidates did make their choice of substitution clear, which made it difficult to award partial credit in the cases where errors then occurred. As the resulting quadratic was simple, very few candidates used the quadratic formula and factorisation was usually successful with only a few sign errors seen. Some candidates stopped after solving the quadratic and the number who tried to cube root, rather than to cube, their solutions was comparatively large.	SC B1 $x = -8$ www (Can then get 5/5 if both found www and exactly two solutions justified)
		Total	5		

7		$x^{2} + (2 - 2k)x + 11 + k = 0$	M1*	Attempt to rearrange to a three-term quadratic	Quadratic Functions Each Ms depend on the previous M
		$(2 - 2k)^2 - 4(11 + k)$	M1dep*	Uses $b^2 - 4ac$, involving k and not involving x	
		$4k^2 - 12k - 40 > 0$	A1	Correct simplified inequality obtained www	
		$k^2 - 3k - 10 > 0$			
		(k-5)(k+2)	M1dep*	Correct method to find roots of 3-term quadratic	
			A1	5 and – 2 seen as roots	
		<i>k</i> < -2, <i>k</i> > 5	M1dep*	$b^2 - 4ac > 0$ and chooses "outside region"	-2 > <i>k</i> > 5 scores M1A0
					Allow " $k < -2$ or $k > 5$ " for A1
					Do not allow " $k < -2$ and $k > 5$ "
					Examiner's Comments
					Although this question proved demanding to
					many candidates, there were a large number of
					neat solutions. Most candidates understood the
			A1	Fully correct, strict inequalities.	nature of the question and many gained at least
					three of the four method marks available.
					Accuracy was the main barrier to complete
					success as a large number either failed to rearrange the given equation correctly or to
					substitute correctly into the discriminant.
					Repeated sign errors often resulted in apparently
					correct critical values for <i>k</i> that did not receive
					credit as they were from wrong working.
		Total	7		
8	i	$-2(x^2-6x-2)$	B1	or <i>a</i> = – 2	- 2(x - 3) ² - 22 B1 B1 M0 A0
	i	$= -2[(x-3)^2 - 2 - 9)]$	B1	<i>b</i> = - 3	- 2(x - 3) + 22 4/4 (BOD)
	i		M1	4 + 2 <i>b</i> ²	- 2(<i>x</i> - 3 <i>x</i>) ² + 22 B1 B0 M1 A0

i	$= -2(x-3)^2 + 22$	A1	<i>c</i> = 22 If <i>a</i> , <i>b</i> and <i>c</i> found correctly, then ISW slips in format. If signs of all terms changed at start, can only score SC B1 for fully correct working to obtain $2(x - 3)^2 - 22$ If done correctly and then signs changed at end, do not ISW , award B1B1M1A0	- $2(x^2 - 3)^2 + 22$ B1 B0 M1 A0 - $2(x + 3)^2 + 22$ B1 B0 M1 A0 - $2x(x - 3)^2 + 22$ B0 B1 M1 A0 - $2(x^2 - 3) + 22$ B0 B1 M1 A0 Examiner's Comments The negative coefficient of x^2 generally did not daunt candidates and there were many clear and accurate solutions, aided by the integer arithmetic. There were the usual errors when trying to find the constant term and these were exacerbated by the need to multiply two negative numbers together. Some candidates however, chose to change all the signs to make the question easier; this approach earned a maximum of one mark in this part, with the possibility of follow through marks in part (i). Others treated the expression as an equation to achieve the same effect; at this level it is expected that candidates should know the
				difference.
II	(3, 22)	B1ft	Allow follow through "– their <i>b"</i>	May restart. Follow through marks are for their final answer to (i)
ii		B1ft	Allow follow through "their <i>c</i> "	Examiner's Comments This part was sometimes omitted with candidates apparently not seeing connection between the parts. Others found the coordinates by differentiation and substitution but most used (i) and so were allowed follow-through marks had they made errors in the previous part.

		Total	6		Quadratic Functions
9		$\int_{\text{Let}} y^{\frac{1}{4}} = x$	M1*	Use a substitution to obtain a quadratic or	No marks if whole equation raised to fourth power etc.
		$2x^2 - 7x + 3 = 0$		factorise into two brackets each containing $\mathcal{Y}^{rac{1}{4}}$	
		(2x - 1)(x - 3) = 0	M1dep*	Correct method to solve resulting quadratic	No marks if straight to formula with no evidence of substitution at start and no raising to fourth power / fourth rooting at end.
		$x = \frac{1}{2}, x = 3$	A1	Both values correct	
		$x = \frac{1}{2}, x = 3$ $y = \left(\frac{1}{2}\right)^4, y = 3^4$	M1dep*	Attempt to raise to the fourth power	No marks if $y^{\frac{1}{4}} = x_{\text{and then}}$ $2x - 7x^2 + 3 = 0.$
		(2) $y = \frac{1}{16}, y = 81$	A1	Correct final answers	
		Alternative by rearrangement and squaring: $2y^{\frac{1}{2}} - 7y^{\frac{1}{4}} + 3 = 0, \ 7y^{\frac{1}{4}} = 2y^{\frac{1}{2}} + 3$ $49y^{\frac{1}{2}} = 4y + 12y^{\frac{1}{2}} + 9, \ 37y^{\frac{1}{2}} = 4y + 9$	M2*	Rearrange and square both sides twice	If M0 DM0 or M1 DM0 SC B1 $y = 81$ www SC B1 $y = \frac{1}{16}$
		$16y^2 - 1297y + 81 = 0$	A1	Correct quadratic obtained	(Can then get 5/5 if both found www and exactly two solutions justified)
		(16y - 1)(y - 81) = 0	M1dep*	Correct method to solve resulting quadratic	
		$y = \frac{1}{16}, y = 81$	A1	Correct final answers	



						substitution. A few gave answers like ±81, which lost the final accuracy mark, as did poor attempts $\left(\frac{1}{2}\right)^4$ at $\left(\frac{1}{2}\right)^4$, which was variously seen as $\frac{1}{32}$, $\frac{1}{64}$ or $\frac{1}{256}$.
		Total	5			
10		$\Delta = (k-5)^2 - 4(1)(-3k)$ $= k^2 + 2k + 25$ $= (k+1)^2 + 24$	M1 (AO3.1a) A1 (AO1.1) M1 (AO3.1a) A1 (AO1.1) M1 (AO2.1)	Attempt at discriminant Obtain correct 3- term quadratic Complete the square on their 3- term quadratic	OR : differentiate and solve = 0 Obtain $k = -1$	
		Condition for real roots is $\Delta \ge 0$ $(k+1)^2 \ge 0$ for all k so $(k+1)^2 + 24 > 0$ and hence the equation has real roots for all values of k	A1 (AO2.2a) [6]	For ' $b^2 - 4ac \ge 0$ ' condition OR for explanation that their $\Delta \ge 0$ $(k+1)^2 \ge 0$ with complete	Substitute $k = -1$ and explain that the result is the minimum value of their <i>k</i> -quadratic Correct numerical values and complete	

				argument and conclusion	argument using 24 > 0 plus conclusion	Quadratic Functions
		Total	6			
11	а	$2x^{2} + 4x + 5 = 2(x^{2} + 2x) + 5$ $= 2[(x + 1)^{2} - 1] + 5$ $= 2(x + 1)^{2} + 3$	B1(AO2.2a) B1(AO1.1) M1(AO1.1a) A1(AO1.1) [4]	p = 2 q = 1 Attempt r r = 3	The values of <i>p</i> , <i>q</i> and <i>r</i> could be stated explicitly or could be implied by an answer in completed square form	
	b	Vertex is at (-1, 3)	B1ft(AO1.1) B1ft(AO1.1) [2]	Correct <i>x</i> coordinate Correct <i>y</i> coordinate	FT their (a)	
	С	<i>k</i> <3	B1ft(AO3.1a) [1]	State <i>k</i> < 3, ft their (a)	Must be strict inequality	
		Total	7			
12		$k = t^{\frac{1}{3}}$	M1*	$\frac{1}{2}$ Re	ternative : M2 earrange and ctorise into two	

				Quadratic Functions
$4k^{2} + 17k - 15 = 0$ $(4k - 3)(k + 5) = 0$		quadratic expression	brackets containing $t^{\frac{1}{3}}$. See appendix 1.	
	M1 *dep	Rearrange and attempt	SC If straight to formula with no evidence of substitution at start	
$k = \frac{3}{4}, k = -5$	A1	to solve resulting quadratic equation. See appendix 1.	and no cubing / cube rooting at end, then B1 for $\frac{-17\pm\sqrt{(17^2-4\times4\times-15)}}{2\times4}$ or better	
$t = \frac{27}{64}, t = -125$	M1	Correct values of <i>k</i>	No marks if whole equation cubed etc.	
64	A1		Spotted solutions:	
		Attempt to cube at least one value	If M0 DM0 or M1 DM0 $t = \frac{27}{64}$ SC B1 $t = -125$ www (Can then get 5/5 if	
		Final answers correct	both found www and exactly two solutions justified)	
	[5]	Examiner's Comments		
			adratic needed rearrangement as well as was well approached by the vast majority	

		Tota	tal	5	of candidates, with around 70% achieving all 5 marks. As in previous sessions, some candidates did not make their choice of substitution clear which made it difficult to award marks. The question was best approached by factorisation, and those who opted to use the quadratic formula were often unable to deal with the required arithmetic. Most remembered to cube their solutions to the quadratic, although some did so inaccurately, particularly the fractional solution.
13	a	4	$4\left[x^{2}-3x\right]+11$ $4\left[\left(x-\frac{3}{2}\right)^{2}-\frac{9}{4}\right]+11 \qquad a=4$ $(x-3/2)^{2}$ $4\left(x-\frac{3}{2}\right)^{2}+2 \qquad c=2$	B1 (AO 1.1) B1 (AO 1.1) B1 (AO 1.1) [3]	No marks until attempt to complete the square Must be of the form $4(x \pm q)^2 \pm$ Examiner's Comments This was done very well. Candidates seemed to be very familiar with completing the square. The most common simple numerical error was to have $c = 8.75$. $(2x - 3)^2 + 2$ was seen occasionally.
	b	No	o real roots	B1 (AO 2.2a)	Zero, none, 0, if not 'no real
	© OCB 2017				Dage 10 of 00

		[1]	roots' must be consistent with their (a) Quadratic Functions
			Examiner's Comments Many candidates did this by evaluating the discriminant rather than using the result they had just obtained. 'State' indicates neither working nor justification is required (cf Specification Document).
C	$r = 0 \Rightarrow 1$ real root or 1 repeated root $r < 0 \Rightarrow 2$ real roots	M1 (AO 2.4)	Attempt to relate the value of r to the number of real roots (this can be implied with at least one correct statement) All three statements correct
	$r > 0 \Rightarrow$ no real roots	A1 (AO 2.4) [2]	Examiner's Comments This part proved less successful. Many candidates were not able to start an argument. Some attempted to evaluate $b^2 - 4ac$ but this was rarely done accurately. Those who recognised how to use the given form of the equation made the most progress, occasionally confusing the $r > 0$ and $r < 0$ cases.
	Total	6	

			B1 (AO 1.1a)	or $a = 2$ or $b = -3$ $23 - 2(\text{their } b)^2$		Quadratic Functions
14	а	$2(x^{2} - 6x + 11.5)$ $2((x - 3)^{2} + 11.5 - 9)$ $2(x - 3)^{2} + 5$	B1 (AO 1.1) M1 (AO 1.1) A1 (AO 1.1)	Or <i>C</i> = 5		
			[4]	Most candidates answered this correctly. A few found <i>a</i> and <i>b</i> correctly but made an error in finding <i>c</i> . This most frequently came from an incorrect first step such as $2(x-3)^2 + 11.5 - 9$ or $2(x-3)^2 + 23 - 9$.		
	b	$2(x + 3)^{2} + 5 \text{ is always +ve}$ or $2(x + 3)^{2} + 5 > 0$ or $2(x + 3)^{2} + 5 \ge 5$ Hence no real roots	B1f (AO 1.1) [1]	or $2(x + 3)^2 = -5$, which is impossible or "+ve quadratic" and min on $y = 5$ or "+ve" quadratic; TP at (3, 5). Both Hence no real roots Must use (a), not use D Examiner's Comments Most candidates answered this c	$2(x + 3)^{2} + 5 = 0$ $\Rightarrow x = \sqrt{neg}$ or $x + 3 = \sqrt{neg}$ ft their (a) (a & C > 0)	

				discussed the turning point lost a mark because they merely stated that it is a minimum, rather than showing that this is so.
	С	$2(x-3)^2 = 2(x^2 - 6x + 9)$ k = 18	M1 (AO 1.1a) A1 (AO 2.2a) [2]	or $12^2 - 8k = 0$ Examiner's Comments This question was very well answered.
		Total	7	
		$4x^{2} - 12x + 3 = 4(x^{2} - 3x) + 3$ $= 4\left[\left(x - \frac{3}{2}\right)^{2} - \frac{9}{4}\right] + 3$ $4\left(x - \frac{3}{2}\right)^{2} - 4 \times \frac{9}{4} + 3 = 4\left(x - \frac{3}{2}\right)^{2} - 6$ AG	M1 (A01.1) A1 (A01.1) A1 (A02.1)	Take out a factor of 4 $4x^2 - 12x = 4(x^2 - 3x)$ $x^2 - 3x = (x - \frac{3}{2})^2 - \frac{9}{4}$
15	a	Alternative method $4\left(x-\frac{3}{2}\right)^{2}-6 = 4\left[x^{2}-3x+\frac{9}{4}\right]-6$ $= 4x^{2}-4\times 3x+4\times \frac{9}{4}-6$ $4x^{2}-12x+3=4(x^{2}-3)$ Alternative method	M1 (A01.1) A1 (A01.1) A1 (A02.1) [3]	multiply out square bracket $x^{2} - 3x = \left(x - \frac{3}{2}\right)^{2} - \frac{9}{4}$ intermediate step $4x^{2} - 12x = 4(x^{2} - 3x)$
	b	$\lim_{\text{Minimum point is}} \left(\frac{3}{2}, -6\right)$	B1	

		(AO1.1) B1 (AO1.1) [2]	Quadratic Functions
	Total	5	