1.	Solve	the	ineo	ualities
	OUIVE	uic		uaiiucs

i.
$$3 - 8x > 4$$
,

[2]

ii.
$$(2x-4)(x-3) \le 12$$
.

[5]

2. Solve the following inequalities.

(i)
$$5 < 6x + 3 < 14$$

[3]

(ii)
$$x(3x - 13) \ge 10$$

[5]

3. i. Sketch the curve $y = 2x^2 - x - 3$, giving the coordinates of all points of intersection with the axes.

[4]

ii. Hence, or otherwise, solve the inequality $2x^2 - x - 3 > 0$.

[2]

iii. Given that the equation $2x^2 - x - 3 = k$ has no real roots, find the set of possible values of the constant k.

[3]

4. Find the set of values of *x* for which

$$x^2 < x + 6$$
 or $3x + 2 \ge 20 - x$.

Give your answer in set notation.

[6]

5.	In this question y	ou must shov	v detailed	reasoning
----	--------------------	--------------	------------	-----------

A gardener is planning the design for a rectangular flower bed. The requirements are:

- the length of the flower bed is to be 3 m longer than the width,
- the length of the flower bed must be at least 14.5 m,
- the area of the flower bed must be less than 180 m².

The width of the flower bed is x m.

By writing down and solving appropriate inequalities in x, determine the set of possible values for the width of the flower bed.

[6]

- 6. (a) The equation $x^2 + 3x + k = 0$ has repeated roots. Find the value of the constant k. [2]
 - (b) Solve the inequality $6 + x x^2 > 0$.

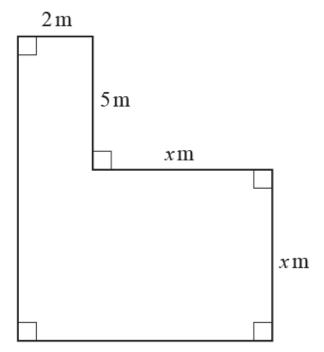
[2]

7. Solve the following inequalities.

(a)
$$-5 < 3x + 1 < 14$$

[2]

(b)
$$4x^2 + 3 > 28$$


[3]

[1]

[1]

[4]

8.

The diagram shows a patio.

The perimeter of the patio has to be less than 44 m.

The area of the patio has to be at least 45 m².

- (a) Write down, in terms of x, an inequality satisfied by
 - (i) the perimeter of the patio,
 - (ii) the area of the patio.
- (b) Hence determine the set of possible values of x.

END OF QUESTION paper

© OCR 2017. Page 3 of 12 PhysicsAndMathsTutor.com

Mark scheme

	Questio	n	Answer/Indicative content	Marks	Part marks and guidance	
1		i	8 <i>x</i> < -1	B1	soi, allow $-8x > 1$ but not just $8x + 1 < 0$	Allow ≤ or ≥ for first mark
		i	$x < -\frac{1}{8}$	B1	$-rac{1}{8} > x$	Do not ISW if contradictory
		i			$\frac{1}{-8}$ Do not allow $\frac{1}{-8}$	Do not allow ≤ or ≥
					Examiner's Comments The negative <i>x</i> coefficient increased the difficulty of this linear inequality so that only two-thirds of candidates secured both marks.	Bo Not anot 2 of 2
		ii	$2x^2 - 10x \le 0$	M1*	Expand brackets and rearrange to collect all terms on one side	No more than one incorrect term
		ii	$2x(x-5) \le 0$	DM1*	Correct method to find roots of resulting quadratic	Allow $(2x + 0)(x - 5)$ Do not allow $(2x - 4)(x - 3)$, this is the original expression.
		ii		A1	0, 5 seen as roots – could be on sketch graph	
		ii		DM1*	Chooses "inside region" for their roots of their resulting quadratic (not the original)	Dependent on first M1 only
					Do not accept strict inequalities for final mark	
		l ii	0 ≤ <i>x</i> ≤ 5	A1	Examiner's Comments	Allow " $x \ge 0$, $x \le 5$ ", " $x \ge 0$ and $x \le 5$ " but do not
			05/20	Al	Less than half of candidates provided fully correct solutions to this quadratic inequality. Some failed to expand and rearrange initially and thus earned no credit. Most were able to complete both first stages accurately, but on	Allow " $x \ge 0$, $x \le 5$ ", " $x \ge 0$ and $x \le 5$ " but do not allow " $x \ge 0$ or $x \le 5$ "

				reaching $2x^2 - 10x \le 0$ many "cancelled" x and thus could get no further. Where both roots were found, choosing the correct region still proved difficult, with some choosing the "outside" and other candidates writing $x \le 0$, $x \le 5$.	Inequalities
		Total	7		
2	i	5 – 3 < 6 <i>x</i> < 14–3	M1	Attempt to solve two equations/inequalities each involving all 3 terms	
	i	2 < 6x < 11	A1	2, 11 seen from correct inequalities	$\frac{1}{3} < x \text{ and } x < \frac{11}{6}$
				www Award full marks if initially working with equations but final answer correct.	1 11 1
		$\frac{1}{3} < x < \frac{11}{6}$		Examiner's Comments	$\frac{1}{3} < x, x < \frac{11}{6}$ but do not allow " $\frac{1}{3} < x$ or $x < \frac{1}{11}$
	I	3 6	A1	This simple "double inequality" was well tackled by almost all candidates. Only the very weakest either tried to combine it into a single inequality and/or made arithmetical errors.	$\frac{11}{6}$
	ii	$3x^2 - 13x - 10 \ge 0$	M1*	Expands and rearranges to collect all terms on one side	
	ii	$(3x+2)(x-5) \ge 0$	M1dep*	Correct method to find roots	
	ii		A1	$-\frac{2}{3}$, 5 seen as roots	
	ii	$-\frac{2}{3}, x \ge 5$	M1	Chooses "outside region" for their roots of their quadratic	$-\frac{2}{3}$ e.g. $3 \ge x \ge 5$ scores
				Do not allow strict inequalities for final mark	_2
	ii		A1	Examiner's Comments	Allow " $x \le 2$, $x \ge 5$ ",
				Just under half of candidates provided fully correct solutions to this quadratic inequality. Some failed to expand and rearrange at the start and thus earned	" <i>x</i> ≤ 3 or

					no credit. Most were able to complete the first stage accurately, but the resulting quadratic proved more difficult to handle. Those who factorised were usually successful, whilst those who attempted to use the quadratic formula were often correct in performing the substitution but unable to find the square root of 289. Most of those who found the correct roots also chose the correct region, but there were a significant number who expressed this incorrectly, $\frac{2}{3} \ge x \ge 5.$	Inequalities $ \frac{2}{3} \text{ and } x \ge 5" $ SC If question "misread" as $x(3x - 13) \ge 0$ $ \frac{13}{3} \text{ Roots found as } 0, 3 = 31 $ $ \frac{13}{3} \text{ and } x \ge 5 = 31 $ Roots found as 0, as above $ \frac{13}{3} \text{ and } x \ge 5 = 31 $ $ \frac{13}{3} \text{ and } x \ge 5 = 31 $ Roots found as 0, as above $ \frac{13}{3} \text{ and } x \ge 5 = 31 $ B1, max 2/5
			Total	8		
3		i	(2x - 3)(x + 1) = 0	M1	Correct method to find roots - see appendix 1	
		i	$x = \frac{3}{2}, x = -1$	A1	Correct roots	
		i	-1 3 2	A1ft	 Good curve: Correct shape, symmetrical positive quadratic Minimum point in the correct quadrant for their roots (ft) their x intercepts correctly labelled (ft) 	

				y intercept at (0, -3). Must have a graph.	Inequalities
	i		B1	Examiner's Comments Most candidates recognised this as a quadratic and provided an appropriate sketch, although there was a tendency for some to become steep/vertical extremely quickly rather indicate increasing gradient. The points of intersection on the x-axis were usually accurate with the occasional sign swaps. Although the y-intercept was usually correctly identified as -3, it was very common to see this as vertex of the graph which lost an accuracy mark; candidates were expected to indicate the vertex would be in the correct quadrant for their roots	
	ii	$x < -1, x > \frac{3}{2}$	M1	Chooses the "outside region"	If restarted, fully correct method for solving a quadratic inequality including choosing "outside region" needed for M1
	ii		A1ft	Follow through x -values in (i). Allow $ (x < -1, x > \frac{3}{2}), (x < -1) \text{ or } x > \frac{3}{2}) \text{ but} $ do not allow $ (x < -1) \text{ and } x > \frac{3}{2}) $ Examiner's Comments $ (x < -1) \text{ and } x > \frac{3}{2} $ Examiner's Comments $ (x < -1) \text{ and chose the correct outside region, although choosing the inside region was a frequently seen error. The notation used to describe the region was usually correct; incorrect language such as joining the two sections with the word 'and' lost the accuracy mark. } $	$-1 > x > \frac{3}{2}$ NB e.g. A mark Must be strict inequalities for A mark
	iii	$b^2 - 4ac = 1^2 - 4 \times 2 \times - (3 + k)$	M1	Rearrangement and use of $b^2 - 4ac < 0$, must involve 3 and k in constant term (not $3k$)	Alt for first two marks: M1 Attempt to find turning point and form inequality $k < y_{min}$
	iii	25 + 8 <i>k</i> < 0	A1	p + 8k < 0 oe found, any constant p . p need not be simplified	$(\frac{1}{4}, -\frac{25}{8})$

				Correct final answer		Inequalities
	iii	$k < -\frac{25}{8}$	A1	This proved demanding for many candidates. Although some secured all three		If M0 (either scheme) SC B1 $k=-rac{25}{8} ext{ or } k>-rac{25}{8} ext{ seen}$
		Total	9			
4		$3x+2 \ge 20-x \Rightarrow 4x \ge 18$ $x \ge \frac{9}{2}$ $x^2 < x+6 \Longrightarrow x^2-x-6 < 0$ Critical values 3, -2 $-2 < x < 3$ $\{x: -2 < x < 3\} \cup \left\{x: x \ge \frac{9}{2}\right\}$	M1 (AO1.1a) A1 (AO1.1) M1 (AO1.1a) A1 (AO1.1) A1FT (AO1.1) A1 (AO2.5) [6]	Rearranging to the form $ax \ge b$ Rearrange and attempt to solve resulting 3-term quadratic BC Correct region for their critical values Dependent on both M marks	Allow one error	

		Total	6		Inequalities
		$ \begin{array}{l} DR \\ x+3 \ge 14.5 \end{array} $		Accept any inequality or equals and any letter for the width Correct inequality (seen or implied) M1A1 correct answer with no working	
		$x \ge 11.5$ $x(x+3) < 180$	M1(AO 3.1b)E A1(AO 1.1)E M1(AO 3.1b)E	Accept any inequality or equals Correct expansion and attempt to solve three term quadratic Correct inequalities SC B1: $x < \sqrt{60}$	
5		$x^2 + 3x - 180(<0) \Rightarrow (x - 12)(x + 15)(<0)$	M1(AO 1.1)E	(seen or implied) $\boxed{ B1: x \ge 29/6}$ Examiner's Comments	
		-15 < <i>x</i> < 12	A1(AO 1.1)E B1(AO 1.1)E	As this was a detailed reasoning question it was expected that candidates would do just that and show sufficient reasoning so that examiners could see that a complete analytical method had been employed. So it was therefore not	
		11.5 ≤ <i>x</i> < 12	[6]	possible to award full marks to those candidates who wrote statements such as $x(x+3) < 180 \Rightarrow -15 < x < 12$. While many candidates correctly found that $11.5 \le x < 12$ a small proportion $\frac{29}{6} \le x < \sqrt{60}$.	
				This incorrect answer came from misreading the question and considering the length of the flower bed to be three times longer than its width (and not just 3m longer than the width).	

		Total	6			Inequalities
			M1 (AO1.2)	$x^{2} + 3x + k = (x + a)^{2}$ $= x^{2} + 2ax + a^{2}$ $\Rightarrow a = 1.5$ $\Rightarrow k = 1.5^{2}$	or $(x + 1.5)^2 - 2.25 + k = 0$	
6	а	$k = \frac{9}{4} \text{ or } 2.25$	A1 (AO1.1)	Examiner's Comments		
			[2]	This question was answered well. Use of popular approach, but some candidates method A few candidates started with general the "completing the square" memistakes in the algebraic manipulation in	s used the "completing the square" $9-4k>0$. Others used b^2+4ac . In thod was less successfully applied, with	
	b	(3 - x)(2 + x) > 0 or $(x - 3)(x + 2) < 0-2 < x < 3 or 3 > x > -2 ISW$	M1 (AO1.1a) M1 (AO2.2a)	oe Allow $(3 - x)(2 + x)$ or $(x - 3)(x + 2)$ Allow $x > -2$, $x < 3$ or $x > -2$ and $x < 3$ Correct ans: BOD M1A1	or -2 and 3 seen x > -2 or x < 3 M1A0 unless followed by ans	
		or <i>x</i> ∈ (–2, 3)	[2]	Examiner's Comments Many candidates were unable to deal w > 0 or $(-x - 3)(x + 2) > 0$. Many eventual $\{-3 < x < 2\}$. A few candidates gave cor two separate regions: $x > -2$, $x < 3$.	ly obtained either $\{x < -2 \text{ and } x > 3\}$ or	
		Total	4			

		-6 < 3 <i>x</i> < 13	M1 (AO 1.1)	Attempt to solve two equations / inequalities each	Correct order of	Inequalities
7	а	$-2 < x < \frac{13}{3}$	A1 (AO 1.1) [2]	involving all three terms Obtain correct inequality	operations	
	ь	$4x^2 > 25$ $-\frac{5}{2} \cdot \frac{5}{2}$	M1 (AO 1.1) M1 (AO 1.1) A1FT (AO 2.2a)	Rearrange to useable form Attempt to find critical values	Or $4x^2 - 25 > 0$ or BC	
		$x < -\frac{5}{2} \qquad \text{or} \qquad x > \frac{5}{2}$	[3]	Choose 'outside' region for inequality FT their critical values	or BC	
		Total	5			
8	а	(i) $\begin{vmatrix} 2+5+x+x+(x+2)+(x+1) \\ 5 \end{vmatrix} < 44$ oe	B1(AO 1.1) [1]	Correct inequality	Must be < only	
		(ii) $x(x+2) + 10 \ge 45$ oe	B1(AO 1.1) [1]	Correct inequality relating to area	Must be ≥ only	
	b	x<7.5	B1FT(AO 1.1)	Obtain $x < 7.5$ from linear inequality FT their linear inequality in (a)		
		$x^2 + 2x - 35 \ge 0$	M1(AO 1.1a)	Attempt to solve three term quadratic		

	A1FT(AO 2.4)	BC	Inequalities
critical values are -7 and -5 $x \le -7$, $x \ge 5$ but x is a length so $x \ge 5$	B1(AO 2.2a)	Choose 'outside' region for inequality FT their quadratic inequality in (b) , as long as one positive root and one negative root Single correct interval – any correct notation B1M1A0B1 possible if no reason for rejecting –7 Condone 5 ≤ x < 7.5	
	[4]		
Total	6		

© OCR 2017. Page 12 of 12 PhysicsAndMathsTutor.com