[2]

[3]

[2]

[3]

© OCR 2017.

Page 1 of 19

PhysicsAndMathsTutor.com

- Find the value of each of the following. $(5)^{-2}$

Simplify $\frac{\left(4x^5y\right)^3}{\left(2xv^2\right)\times\left(8x^{10}v^4\right)}.$

Evaluate (0.2)⁻².

Expand and simplify $(7 - 2\sqrt{3})^2$

Express $125\sqrt{5}$ in the form 5^k.

- Express $\frac{20\sqrt{6}}{\sqrt{50}}$ in the form $a\sqrt{b}$, where *a* and *b* are integers and *b* is as small as possible.
- Simplify $(16a^{12})^{\frac{3}{4}}$

Simplify $10 + 7\sqrt{5} + \frac{38}{1 - 2\sqrt{5}}$ at the Form $a + b\sqrt{5}$.

ii. Simplify
$$1 - 2\sqrt{5}$$
, giving your answer in the form a

i.
$$(\overline{3})$$

ii. $81^{\frac{3}{4}}$

4.

5.

2.

1.

i.

i.

ii.

i.

ii.

[3]

[2]

[2]

[2]

[3]

i. Express $\sqrt{48} + \sqrt{75}$ in the form $a\sqrt{b}$, where *a* and *b* are integers.

[2]

[3]

[2]

[3]

ii. Simplify $\frac{7+2\sqrt{5}}{7+\sqrt{5}}$, expressing your answer in the form $\frac{a+b\sqrt{5}}{c}$, where *a*, *b* and *c* are integers.

i. Evaluate
$$\left(\frac{1}{27}\right)^{\frac{2}{3}}$$

ii. Simplify
$$\frac{(4a^2c)^3}{32a^4c^7}$$
.

8.

6.

7.

i. Express $\sqrt{50} + 3\sqrt{8}$ in the form $a\sqrt{b}$, where *a* and *b* are integers and *b* is as small as possible.

ii. Express
$$\frac{5+2\sqrt{3}}{4-\sqrt{3}}$$
 in the form $(5c^2d)^3 \times \frac{2c^4}{d^5}$, where *c* and *d* are integers.

[3]

[1]

[2]

[2]

- 9. Find the value of each of the following.
 - i. 3°
 - ii. $9^{\frac{3}{2}}$

 $\left(\frac{4}{5}\right)^{-2}$

iii.

[2]

Surds and Indices

[2]

[3]

[3]

Simplify $\frac{\left(2x^2y\right)^3 \times 4x^3y^5}{2xy^{10}}$

^{11.} (See Insert for Specimen 64003.) Show that the two values of *b* given on line 34 are equivalent. [3]

- 12. (See Insert for Specimen 64003.) On a unit circle, the inscribed regular polygon with 12 edges gives a lower bound for π , and the escribed regular polygon with 12 edges gives an upper bound for π . Calculate the values of these bounds for π , giving your answers:
 - (A) in surd form
 - (B) correct to 2 decimal places.

13. (i) Find the value of $(1\frac{7}{9})^{-\frac{1}{2}}$.

(ii)
$$\frac{(6x^5y^2)^3}{18y^{10}}$$
. [2]

14.

(i) Simplify $\frac{5-2\sqrt{7}}{3+\sqrt{7}}$, giving your answer in the form $\frac{a-b\sqrt{7}}{c}$, where *a*, *b* and *c* are [3] integers.

(ii)
$$\frac{12}{\sqrt{2}} + \sqrt{98}$$
, giving your answer in the form $d\sqrt{2}$ where *d* is an integer. [2]

15.

[3]
Show that
$$\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}$$
 can be written in the form $a + \sqrt{b}$ where *a* and *b* are integers.

Surds and Indices

[2]

16. Show that
$$\sqrt{27} + \sqrt{192} = a\sqrt{b}$$
, where *a* and *b* are prime numbers to be determined. [2]

17. (See Insert for Practice2 64003.) Let a_1 and a_2 be the two values of *y* referred to in line 38 with $a_1^3 = \frac{5 + \sqrt{29}}{2}$ and $a_2^3 = \frac{5 - \sqrt{29}}{2}$.

(a)
$$a_2^3 = -\frac{1}{a_1^3}$$
. [1]

(b) Deduce that
$$a_1 - \frac{1}{a_1} = a_2 - \frac{1}{a_2}$$
 as stated in line 38.

18.
$$\frac{8}{3-\sqrt{5}}$$
 Write $\frac{3}{3-\sqrt{5}}$ the form $a+b\sqrt{5}$, where *a* and *b* are integers to be found. [2]

END OF QUESTION paper

Mark scheme

Que: n	stio	Answer/Indicative content	Marks	Part marks and guidance	
1	i	$5^{3.5}$ oe or $k = 7/2$ oe	2	M1 for $125 = 5^3$ or $\sqrt{5} = 5^{\frac{1}{2}}$ soi Examiner's Comments This question was found to be difficult by many candidates. In the first part, although the correct answer was seen fairly frequently, a significant number of candidates, having correctly shown 125 and $\sqrt{5}$ to be 5 ³ and $5^{\frac{1}{2}}$ respectively, then multiplied the indices to give an answer of $5^{\frac{3}{2}}$. Others found one of the indices correctly, but not the other. Some candidates treated it as though the square root applied to 125 as well.	M0 for just answer of 5 ³ with no reference to 125
	i	attempting to multiply numerator and denominator of fraction by $1+2\sqrt{5}$	M1		some cands are incorporating the $10 + 7\sqrt{5}$ nto the fraction. The M1s are available even if this is done wrongly or if $10 + 7\sqrt{5}$ is also multiplied by $1 + 2\sqrt{5}$
	i	denominator = –19 soi	M1	must be obtained correctly, but independent of first M1 Examiner's Comments Few correct answers were seen in the second part. Being in a different format from usual, many candidates did not know how to cope with the initial $10 + 7\sqrt{5}$. Many multiplied the '10 + $7\sqrt{5}$ ' term by $2 + \sqrt{5}$, sometimes losing the denominator altogether. Those who knew they should rationalise the denominator of the fraction often made	e.g. M1 for denominator of 19 with a minus sign in front of whole expression or with attempt to change signs in numerator

				correctly, but the $16^{\frac{3}{4}}$ proved more challenging. A surprising number did $\frac{3}{4} \times 16 = 12$ to obtain 12 <i>a</i> ⁹ .	Surds and Indices
		Total	5		
3	i	$61 - 28\sqrt{3}$	3	B2 for 61 or B1 for 49 + 12 found in expansion (may be in a grid) and B1 for $-28\sqrt{3}$ if B0, allow M1 for at least three terms correct in $49 - 14\sqrt{3} - 14\sqrt{3} + 12$ the correct answer obtained then spoilt earns SC2 only	
	i	4√3	2	M1 for $\sqrt{50} = 5\sqrt{2}$ or $\sqrt{300} = 10\sqrt{3}$ or $20\sqrt{300} = 200\sqrt{3}$ or $\sqrt{48} = 2\sqrt{12}$ seen Examiner's Comments Most candidates gained at least one mark in the first part for $-28\sqrt{3}$. Those who failed to reach the correct final answer often incorrectly expanded the last terms of the brackets, obtaining $\pm 4\sqrt{3}$, 6 or 12 rather than +12. For most candidates the second part was more challenging than the first part. Errors tended to be introduced when rationalising the denominator, with many choosing to multiply by $\sqrt{50}$ or $-5\sqrt{2}$. Those that did rationalise were then unsure how to simplify the numerator, often obtaining large roots which they were unable to simplify accurately. Those that had the most success in this question expressed the $\sqrt{50}$ in the	

				denominator as $5\sqrt{2}$ and were then comfortable dividing surds and cancelling fractions.	Surds and Indice
		Total	5		
4	i	$\frac{9}{25}$ or 0.36 isw	2	M1 for numerator or denominator correct or for squaring correctly or for inverting correctly Examiner's Comments The first part was very well answered on the whole, with the majority scoring full marks. Most inverted first and attempted to square second.	$\frac{1}{\left(\frac{25}{9}\right)} \text{ or } \left(\frac{25}{9}\right)^{-1} \text{ or } \frac{25}{9}$ M1 for eg $\left(\frac{3}{5}\right)^2 \text{ or } \frac{3}{5}$ for $\left(\frac{3}{5}\right)^2 \text{ or } \frac{3}{5}$ M0 for just $\left(\frac{5}{3}\right)^2$
	i	27	2	M1 for 8 $1^{\frac{1}{4}} = 3$ soi Examiner's Comments Again a high proportion of correct answers was seen. Among the common errors were responses from candidates who either thought that $81^{\frac{1}{4}} = \sqrt{3}$ or that they needed to find $(\sqrt[3]{81})^4$. Regrettably, the error $3^3 = 9$ was not rare.	eg M1 for 3 ³ M0 for 81 ³ = 531441 (true but not helpful)
		Total	4		
5		$4x^4y^{-3}$ or $\frac{4x^4}{y^3}_{as final}$	3	B1 each 'term'; or M1 for numerator = $64x^{15}y^8$ and M1 for denominator = $16x^{11}y^8$	B0 if obtained fortuitously mark B scheme or M scheme to advantage of candidate, but not a mixture of both schemes
		answer		Examiner's Comments	

					Surds and Indices
				Whereas the numerical work with indices is good, the algebraic work is definitely weaker – as was seen in this question. There were still a pleasing number of correct	
				solutions, but quite a few dropped a mark or two here –	
				often for not cubing the 4 in the numerator – and/or for having x^{10} in the denominator.	
		Total	3		
6	i	$9\sqrt{3}$ www.oe as final answer	2	M1 for $\sqrt{48} = 4\sqrt{3}$ or $\sqrt{75} = 5\sqrt{3}_{soi}$	
	i	$\frac{39+7\sqrt{5}}{44}$ www as final answer	3	M1 for attempt to multiply numerator and denominator by $7 - \sqrt{5}$ B1 for each of numerator and denominator correct (must be simplified) Examiner's Comments Simplifying and adding the surds was done correctly by a high proportion of candidates. Most candidates knew how to rationalise a denominator for the second part but mistakes in implementation were common, the denominator being more frequently correct than the numerator.	$\frac{39}{44} + \frac{7\sqrt{5}}{44}$ for 3 marks eg MOB1 if denominator correctly rationalised to 44 but numerator not multiplied
		Total	5		
7	i	$\frac{1}{9}$	2	isw conversion to decimal	
	i			M1 for 9 or for 3^{-2} or for $\overline{3}$	ie M1 for evidence of $(\sqrt[3]{27})^2$ or $1/(\sqrt[3]{27})$ found correctly

	i			Except M0 for 9 from 27/3 or $\sqrt[3]{27}$	Surds and Indice
	i	$2a^2c^4$ or $\frac{2a^2}{c^4}$ as final answer	3	B1 for each element; must be multiplied if B0, allow SC1 for $64a^{9}c^{3}$ obtained from numerator or for all elements correct but added Examiner's Comments Most candidates knew what to do and handled the indices well. Errors such as $\sqrt[3]{27} = 9$ were seen occasionally in the first part. In the second, the most frequent errors came from failing to cube the 4 or the a^{2} correctly.	
		Total	5		
8	i	11√2	2	$\begin{bmatrix} M1 \text{ for} \\ \sqrt{50} = \end{bmatrix} 5\sqrt{2} \text{ or } \begin{bmatrix} 3\sqrt{8} = \end{bmatrix} 6\sqrt{2}$	
	i	attempting to multiply numerator and denominator of fraction by $4 + \sqrt{3}$	M1		
	i i	$2 + \sqrt{3}$ or $2 + 1\sqrt{3}$ or $c = 2$ and $d = 1$	A2	or B1 for denominator = 13 soi or numerator $26+13\sqrt{3}$	
	i i	or			
	i i	cross-multiplying by $4 - \sqrt{3}$ and forming a pair of simultaneous equations in <i>c</i> and <i>d</i> , with at most one error	M1		
	i i	c = 2 and $d = 1$	A2	A1 for one correct	Examiner's Comments

					Surds and Indices
					The first part was nearly always correct with the vast
					majority scoring at least one mark for correctly stating
					that $\sqrt{50} = 5\sqrt{2}$.Some candidates had
					difficulty with $3\sqrt{8}$ and a number incorrectly gave
					this as $5\sqrt{2}$ which typically came from the incorrect
					working of
					$3\sqrt{8} = 3(2\sqrt{2}) = (3+2)\sqrt{2}$
					In the second part, most candidates clearly knew how
					to rationalise the denominator with nearly all correctly
					indicating the need to multiply both numerator and
					denominator by $(4 + \sqrt{3});$
					only a small minority incorrectly multiplied by either
					$(4 - \sqrt{3})$ or $\sqrt{3}$.
					achieved a value of 13 for the denominator but some
					had issues with either expanding or simplifying the
					numerator. A significant minority who achieved
					$26+13\sqrt{3}$
					13
					did not simplify this correctly with $2 + 13\sqrt{3}$
					being a common incorrect answer.
		Total	5		
9	i	1	1		
	:				
	i	27	2	condone ±27;	
	i			B1 for [±]3 ³ or	
	i			<u>√729</u>	

	i			or for $\left[9^{\frac{1}{2}} = \right] 3$ or ± 3 soi	Surds and Indices
	iiii	$\frac{25}{16}$ or $1\frac{9}{16}$ isw	2	B1 for $\frac{5}{4}$ or $\frac{1}{\frac{16}{25}}$ or $\frac{16}{25}$ oe	B0 for 1.5625 without fractions seen; if this is found, check for possible use of calculator throughout the paper Examiner's Comments Nearly all candidates interpreted the zero power correctly in the first part. Most interpreted the fractional power correctly in the second part, although a number of candidates began by attempting to cube 9, which usually ran into difficulties as candidates did not have the assistance of their calculators; they had similar issues when attempting to find the square root 729. The most common error was candidates believing that 3 cubed was 9. Coping with the fraction and negative power in the last part was usually done correctly; notable errors were inverting the fraction whilst losing the power altogether or losing the power from either the numerator or denominator.
		Total	5		
1		$\frac{16x^8}{y^2} \text{OR} \frac{16x^8}{y^2}$	B2(AO1. 1) (AO1.1) [2]	B1 for two elements correct out of coefficient, power of <i>x</i> , power of <i>y</i> as part of a product	
		Total	2		

		M1/AO3	TT	Surds and Indices
		1a)	Attempt to	
			square	
	$(\sqrt{6} - \sqrt{2})^2 = 8 - 2\sqrt{12}$	A1(AQ1.1		
	$\left \frac{\sqrt{2}}{2}\right = \frac{\sqrt{2}\sqrt{2}}{4}$)		
			Answer in exact	
1 1	$=\frac{8-4\sqrt{3}}{4}=2-\sqrt{3}$	E1(AO2.1)	form	
	$\sqrt{6} - \sqrt{2}$		Completion of	
	$\frac{\sqrt{2}-\sqrt{2}}{2}$ spositive so it is equal to $\sqrt{2-\sqrt{3}}$		argument to	
			values are	
			equal	
		[3]		
	Total	3		
1	$3(\sqrt{6} - \sqrt{2})$	B1(AO1.	Half perimeter	
2	(A) Lower bound:	1)	(from text)	
		B1(AO1.		
	Upper bound: $24 - 12\sqrt{3}$	i) B1(AO1.		
		1)		
	(B) = 3.11 and 3.22		Both as decimals	
		[3]		
	Total	3		

		[2]	$= 6^{3} x^{15} y^{6} \text{ or}$ $216 x^{15} y^{6}$ Examiner's Comments In the second part, the vast majority of candidates coped well, the main mistakes were usually due to the misapplication of the rules of indices, adding when the powers should be multiplied. What was concerning was the minority of candidates who could not multiply or divide the numerical values forming the coefficient.	Surds and Indices
	Total	5		
1 i 4	<u>29−11√7</u> 2 _{sw}	3	B1 for each element; condone written as two separate fractions if 0, allow M1 for three terms correct in $15-5\sqrt{7}-6\sqrt{7}+14$ or for attempt to multiply both denominator and numerator by $3-\sqrt{7}$ Examiner's Comments	

			the numerator and denominator by $(3-\sqrt{7})$, nowever a few tried to multiply both parts of the fraction by $\sqrt{7}$, or by $(3+\sqrt{7})$, or to 'cancel' the $\sqrt{7}$ n the numerator and denominator. The most common error was in determining $-2\sqrt{7} \times \sqrt{7}$ which commonly retained a multiple of $\sqrt{7}$.	Surds and Indices
·- ·-	13√2	2	$\frac{12}{\sqrt{2}} = 6\sqrt{2}$ M1 for $\sqrt{2} = 6\sqrt{2}$ soi or for $\sqrt{98} = 7\sqrt{2}$ soi or for $\frac{12 + 14}{\sqrt{2}}$ oe Examiner's Comments In the second part, most candidates could simplify $\sqrt{98}$ to $7\sqrt{2}$ iso scoring at least one mark) but many had difficulties $\frac{12}{\sqrt{2}}$ with some multiplying the $\sqrt{2}$ sy the $\sqrt{98}$ or leaving their answer as $\frac{26}{\sqrt{2}}$.	
	Total	5		

		Alternative solution $a_1^3 a_2^3 = \frac{5 + \sqrt{29}}{2} \times \frac{5 - \sqrt{29}}{2} = \frac{25 - 29}{4} = -1 \Longrightarrow a_2^3 = -\frac{1}{a_1^3}$		AG Convincingly shown		Surds and Indices
		$a_2^3 = -\frac{1}{a_1^3} \Longrightarrow a_2 = -\frac{1}{a_1}$	B1(AO2. 2a)			
	b	$a_2 - \frac{1}{a_2} = -\frac{1}{a_1} + a_1 = a_1 - \frac{1}{a_1}$	B1(AO2. 1) [2]	AG Convincing completion		
		Total	3			
1 8		$\frac{8}{(3-\sqrt{5})} \times \frac{(3+\sqrt{5})}{(3+\sqrt{5})} = 6 + 2\sqrt{5}$	M1 (AO1.1a) A1 (AO1.1b) [2]	Attempt to rationalize the denominator Must be in correct notation Examiner's Comments This was well answered, althoug mistakes were seen in the simpl OCC Check numerica calculator.	Allow full credit for correct answer	

			Surds and Indice
Total	2		
	Total	Total 2	Total 2