Polynomials

- 1. You are given that $f(x) = x^4 x^3 + x^2 + 9x 10$.
 - i. Show that x = 1 is a root of f(x) = 0 and hence express f(x) as a product of a linear factor and a cubic factor.

[3]

- Hence or otherwise find another root of f(x) = 0. ii. [2] iii. Factorise f(x), showing that it has only two linear factors. Show also that f(x) = 0 has only two real roots. [5] 2. You are given that $f(x) = x^2 + kx + c$. Given also that f(2) = 0 and f(-3) = 35, find the values of the constants k and c. [4] З. You are given that $f(x) = 6x^3 - 25x^2 + 2x + 8$. (a) Evaluate f(4). [1] (b) In this question you must show detailed reasoning. Express f(x) as the product of three linear factors. [4] 4. (a) Show that (x - 3) is a factor of $f(x) = 6x^3 - 17x^2 - 5x + 6$. [1] (b) Show that f(x) can be written as the product of 3 linear factors. [4] 5. Show that (x - 2) is a factor $3x^3 - 8x^2 + 3x + 2$. [3] 6. In this question you must show detailed reasoning. You are given that $f(x) = 4x^3 - 3x + 1$. [2] (a) Use the factor theorem to show that (x + 1) is a factor of f(x). (b) Solve the equation f(x) = 0. [3] 7. Find the quotient and the remainder when $x^3 - 2x + 3$ is divided by x + 2. [3]
- 8. Write down the roots of the equation $(x + 2)(x^2 25) = 0.$ [2]

Mark scheme

Q	Question		Answer/Indicative content	Marks	Part marks and guidance	
1		i	f(1) = 1 - 1 + 1 + 9 - 10 [= 0]	B1	allow for correct division of $f(x)$ by $(x - 1)$ showing there is no remainder, or for $(x - 1)(x^{2} + x + 10)$ found, showing it 'works' by multiplying it out	condone 1 ⁴ - 1 ³ + 1 ² + 9 - 10
		i	attempt at division by $(x - 1)$ as far as $x^4 - x^3$ in working	M1	allow equiv for $(x + 2)$ as far as $x^4 + 2 x^3$ in working or for inspection with at least two terms of cubic factor correct	eg for inspection, M1 for two terms right and two wrong
					or $x^3 - 3x^2 + 7x - 5$	if M0 and this division / factorising is done in part (ii) or (iii), allow SC1 if correct
		i	correctly obtaining x ³ + x + 10	A1	Examiner's Comments A large number of candidates successfully used the factor theorem to score the first mark and many went on to find the correct cubic factor - the majority of these choosing to do long division rather than use the inspection method. Some did not use the factor theorem but still showed that $x = 1$ was a root by successful division with no remainder. Those who used inspection without first applying the factor theorem did not in general show enough working for a convincing argument that there was no remainder and therefore that $x = 1$ was a root. A small number did not appear to understand what was meant by 'express f(x) as the product of a linear factor and a quadratic factor' – some of these gained partial credit for the correct division seen in parts (ii) or (iii).	cubic obtained there; attach the relevant part to (i) with a formal chain link if not already
						seen in the image zone for (i)

	ij	[g(-2) =] - 8 - 2 + 10 or f(-2) = 16 + 8 + 4 - 18 - 10	M1	[in this scheme $g(x) = x^2 + x + 10$] allow M1 for correct trials with at least two values of x (other than 1) using $g(x)$ or $f(x)$ or $x^2 - 3x^2 + 7x - 5$ (may allow similar correct trials using division or inspection)	Polynomials eg f(2) = 16 - 8 + 4 + 18 - 10 or 20 f(3) = 81 $- 27 + 9 + 27$ - 10 or 80 f(0) = $- 10$ f($- 1$) = 1 + 1 + 1 - 9 - 10 or $- 16$ No ft from wrong cubic 'factors' from (i)
	ii	<i>x</i> = - 2 isw	A1	allow these marks if already earned in (i) Examiner's Comments Many used the correct method but made careless errors in calculations especially when trying negative values of <i>x</i> . Very few realised that they could use the factor theorem on the cubic they had found to obtain another root. Many confused 'root' with 'factor' and lost a mark.	NB factorising of $x^3 + x + 10$ or $x^3 - 3x^2 + 7x - 5$ in (ii) earns credit for (iii) [annotate with a yellow line in both parts to alert you – the
		attempted		or $x^3 - 3x^2 + 7x - 5$ by $(x - 1)$ as far as $x^3 - x^2$ in working	image zone for (iii) includes part (ii)] alt method:
	iii	division of $x^3 + x$ + 10 by $(x + 2)$ as	M1	or inspection with at least two terms of quadratic factor correct	allow M1 for attempted
1 1	•	1	1	© OCR 2017. Page 3 of 11 PhysicsAndMat	hsTutor.com

	far as $x^3 + 2x^2$ in			Polynomials division of
	working			quartic by x^2
	working			+ x - 2 as
				far as $x^4 + x^3$
				$-2x^{2}$ in
				working, or
				inspection
				etc
	correctly			
ii		A1	allow these first 2 marks if this has been done in (ii), even if not used here	
	+ 5			
				or
				completing square form
				attempted
				allempled
				or attempt at
				calculus or
iii	use of $b^2 - 4ac$	M1	may be in attempt at formula (ignore rest of formula)	symmetry to
	with $x^2 - 2x + 5$			find min pt
				NB M0 for
				use of b^2 –
				4 <i>ac</i> with
				cubic factor
				etc
				or (x - 1) ² + 4
iii	$b^2 - 4ac = 4 - 20$	A1	may be in formula;	4
	[= - 16]	AI		or min = (1,
				4)
				''
	an amb d		or no real roots of $x^2 - 2x + 5 = 0$;	or (x - 1) ² +
iii	so only two real	A1	allow this last mark if clear use of $x^2 - 2x + 5 = 0$, even if error in $b^2 - 4ac$, provided result negative, but no ft from wrong factor	4 is always
	roots[of f(x)] [and			positive so

	hence no more linear factors]		if last M1 not earned, allow SC1 for stating that the only factors of 5 are 1 and 5 and reasoning eg that $(x - 1)(x - 5)$ and $(x + 1)(x + 5)$ do not give $x^2 - 2x + 5$ [hence $x^2 - 2x + 5$ does not factorise] Examiner's Comments Only about a third of the candidates found the correct quadratic factor. Those who found the quadratic usually gave sensible arguments based on the discriminant to show that only two real roots existed for the quartic. Some tried to use $b^2 - 4ac$ on the cubic $x^3 + x + 10$. Several candidates went back to square one and attempted to factorise the quartic rather than linking the earlier parts to the problem. Some candidates who had not progressed far in the first two parts sometimes made no attempt at this part.	Polynomials No real roots [of $(x - 1)^2 + 4 = 0$] [and hence no linear factors] or similar conclusion from min pt
	Total	10		
2	4 + 2k + c = 0 or $2^2 + 2k + c = 0$	B1	may be rearranged	
	9 – 3 <i>k</i> + <i>c</i> = 35	B1	may be rearranged; the $(-3)^2$ must be evaluated / used as 9	condone –3 ² seen if used as 9
	correct method to eliminate one variable from their eqns	M1	eg subtraction or substitution for <i>c</i> , condone one error	M0 for addition of eqns unless also multiplied appropriately
	<i>k</i> = −6, <i>c</i> = 8	A1	from fully correct method, allowing recovery from slips	if no errors and no method seen, allow correct answers to imply M1 provided B1B1 has been earned

			or			Polynomials
			$[x^{2} + kx + c =] (x - 2)(x - a)$	M1	or $(x-2)(x+b)$	
			– 5 × (–3 – <i>a</i>) = 35 oe	M1		
			<i>a</i> = 4	A1		
			<i>k</i> = −6, <i>c</i> = 8	A1	Examiner's Comments Most candidates were able to make a start and substitute 2 and –3 into f(x), although not all used the information given to write the results as equations. Errors in handling (–3) ² or the 35 were common. Having obtained equations, many did not then go on to use standard methods to solve the simultaneous equations, or made errors in doing so. This meant that the full 4 marks available were given less often than examiners had hoped, although many picked up 2 or 3 marks.	
			Total	4		1
			[384 - 400 + 8 +	B1(AO1.1)		
3	ć	a	8 =] 0	[1]		
	1	b	Long division or equating coefficients $6x^2 - x - 2$ seen $(x - 4)(3x \pm 2)(2x \pm 1)$ (x - 4)(3x - 2)(2x + 1)	M1(AO2.1) A1(AO1.1) M1(AO1.1) A1(AO1.1) [4]	DR	
			Total	5		

		((2) 2 2	B1(AO1.1b)		Polynomials
4	а	$f(3) = 6 \times 27 - 17 \times 9 - 5 \times 3 + 6$		use of Factor theorem with convincing detail	
		= 0	[1]		
		(x-3)(6x ² + x- 2)	M1(AO1.1) A1 (AO 1.1b)		
	b	valid attempt to	M1(AO1.1b)	allow sign errors in trinomial or attempt at long division	
		factorise trinomial	A1(AO1.1b)		
		(x-3)(2x-1)(3x + 2)	[4]		
		Total	1		
		EITHER		AG	
		$f (2) 3 \times 2^3 8 \times 2^2 + 3 \times 2 + 2 + 24 - 32 = 6 + 2 = 0$	M1 (AO 1.1a)	Function notation need not be used Zero must be seen	
5		Therefore by the factor theorem (x)	A1 (AO 1.1b) E1 (AO 2.2a)	Reason required	
		– 2) is a factor	[3]		
		OR	M1	Using algebraic division as far as $3x^2$	
		f(x) = (x-2)(3 x2) - 2 x - 1		Correct quotient	

			A1		Polynomials		
			E1	Reason required			
		No remainder so (<i>x</i> – 2)is a factor	E1 [3]	Examine's Comments There were many good answers and candidates could choose whether to use the factor theorem or to divide. Some candidates lost the mark as they presented the evidence but did not write that $f(2)=0$ implied that $(x-2)$ is a factor, or that no remainder implied that $(x-2)$ is a factor. Exemplar 1 $f(1)=3(2)^3 - 8(2)^2 + 3(2) + 1 = 1$ $f(2)=3(2)^3 - 8(2)^2 + 3(2) + 1 = 1$ $f(2)=3(2)^3 - 8(2)^2 + 6 + 2$ $f(3)=0$			
				This exemplar shows why some candidates were only credited 2 of 3 marks.			
		Total	3		1		
6	а	$f(-1) = 4 \times (-1)^3 - 3(-1) + 1 = -4 + 3 + 1 = 0$	M1 (AO2.1)	DR Use of f(-1) must be seen. Do not allow for algebraic divison.Allow without conclusion if preceded by "If $f(-1) = 0$ then $(x + 1)$ will be a factor" or similar			

		A1			Polynomials
		(AO2.2a) [2]	Clear conclusion must be made		
	Therefore $(x + 1)$ is a factor		Examiner's Comments		
			This question specified a method that was to be tested, so no marks were obtained b part (b). Most candidates were able to evaluate $f(-1) = 0$ but this did not obtain full ma		
	$f(x) = (x + 1) (4x^2 - 1) (4x^2$	141	DR Attempt to divide or to factorise by inspection with $4x^2$	Allow full credit for $(x + 1)(4x - 2)(x - 0.5)$	
	4x + 1) = 0	M1 (AO1.1a)	correct quadratic factor seen or implied by correct linear factors		
b		A1 (AO1.1b)	Both roots seen derived from 3 correct linear factors or use of quadratic formula	No marks for solving the cubic on the calculator	
	$= (x + 1) (2x - 1)^2$ $= 0$				
	$\frac{1}{2}$ [repeated]	A1 (AO1.1b) [3]	1.1b) There were many good answers seen but some candidates who correctly divided then did not state what the roots of the equation were. Some candidates used their		
			Exemplar 2		

				Polynomials
			$0 = 43e^{3} - 3xe^{4}$	
			(pcAM) as aready facted	
			(bct/2)	
			JC=-1 or 2	
			$\frac{41x^2}{(x+1)} (x+1) (x+2 - 4) (x+1) (x+1) $	
			2.85 - 1 repeated to 1	
	Total	5		
	Attempt to find Quotient	M1(AO 1.1a)		
7	Quotient is $x^2 - 2x + 2$	A1(AO 1.1)	Allow M1 for $x^2 \pm 2x$ seen in quotient and $\pm 2x^2 \pm 2x$ seen in long division.	
		B1(AO 1.1)		
	Remainder is -1	[3]		
	Total	3		
8	-2	B1(AO		
	5, –5	1.1a)		

		B1(AO 1.1) [2]	Both needed	Polynomials
	Total	2		