Questions

Q1.

In this question you should show all stages of your working.

Solutions relying on calculator technology are not acceptable.

Using algebra, solve the inequality

 $x^2 - x > 20$

writing your answer in set notation.

(Total for question = 3 marks)

Q2.

(a) Prove that for all positive values of *x* and *y*

$$\sqrt{xy} \le \frac{x+y}{2}$$

(2)

(b) Prove by counter example that this is not true when *x* and *y* are both negative.

(1)

(Total for question = 3 marks)

Q3.

(i) Show that $x^2 - 8x + 17 > 0$ for all real values of x

(3)

(ii) "If I add 3 to a number and square the sum, the result is greater than the square of the original number."

State, giving a reason, if the above statement is always true, sometimes true or never true.

(2)

(Total for question = 5 marks)

Q4.

Figure 1 shows a sketch of a curve *C* with equation y = f(x) and a straight line *l*.

The curve C meets I at the points (-2, 13) and (0, 25) as shown.

The shaded region R is bounded by C and I as shown in Figure 1.

Given that

- f(x) is a quadratic function in x
- (-2, 13) is the minimum turning point of y = f(x)

use inequalities to define *R*.

(Total for question = 5 marks)

Mark Scheme

Q1.

Question	Scheme	Marks	AOs
	Finds critical values $x^2 - x > 20 \Rightarrow x^2 - x - 20 > 0 \Rightarrow x = (5, -4)$	M1	1.1b
	Chooses outside region for their values Eg. $x > 5$, $x < -4$	M1	1.1b
	Presents solution in set notation $\{x : x < -4\} \cup \{x : x > 5\}$ oe	A1	2.5
		(3)	
(3 marks)			
 M1: Attempts to find the critical values using an algebraic method. Condone slips but an allowable method should be used and two critical values should be found M1: Chooses the outside region for their critical values. This may appear in incorrect inequalities such as 5<x<-4< li=""> A1: Presents in set notation as required {x: x < 4} + (x: x > 5} Accept {x < 4 + x > 5} </x<-4<>			
Do not accept $\{x < -4, x > 5\}$			
Note: If there is a contradiction of their solution on different lines of working do not penalise intermediate working and mark what appears to be their final answer.			

Q2.

Question	Scheme	Marks	AOs
(a) Way 1	Since x and y are positive, their square roots are real and so $(\sqrt{x} - \sqrt{y})^2 \ge 0$ giving $x - 2\sqrt{x}\sqrt{y} + y \ge 0$	M1	2.1
	$\therefore 2\sqrt{xy} \le x + y \text{ provided } x \text{ and } y \text{ are positive and so}$ $\sqrt{xy} \le \frac{x + y}{2} *$	A1*	2.2a
		(2)	
Way 2 Longer method	Since $(x-y)^2 \ge 0$ for real values of x and y, $x^2 - 2xy + y^2 \ge 0$ and so $4xy \le x^2 + 2xy + y^2$ i.e. $4xy \le (x+y)^2$	M1	2.1
	$\therefore 2\sqrt{xy} \le x + y \text{ provided } x \text{ and } y \text{ are positive and so}$ $\sqrt{xy} \le \frac{x + y}{2} *$	A1*	2.2a
		(2)	
(b)	Let $x = -3$ and $y = -5$ then LHS = $\sqrt{15}$ and RHS= -4 so as $\sqrt{15} > -4$ result does not apply	B1	2.4
		(1)	
		(3	marks)
	Notes		
(a) M1 : Need two stages of the three stage argument involving the three stages, squaring, square rooting terms and rearranging.			
A1*: Need all three stages making the correct deduction to achieve the printed result.			

(b) B1 : Chooses two negative values and substitutes, then states conclusion

Q3.

Question	Scheme	Marks	AOs
(i)	$x^{2}-8x+17=(x-4)^{2}-16+17$	M1	3.1a
	$=(x-4)^2+1$ with comment (see notes)	A1	1.1b
	As $(x-4)^2 \ge 0 \Rightarrow (x-4)^2 + 1 \ge 1$ hence $x^2 - 8x + 17 > 0$ for all x	A1	2.4
		(3)	
(ii)	For an explanation that it may not always be true Tests say $x = -5$ $(-5+3)^2 = 4$ whereas $(-5)^2 = 25$	M1	2.3
	States sometimes true and gives reasons Eg. when $x=5$ $(5+3)^2 = 64$ whereas $(5)^2 = 25$ True When $x=-5$ $(-5+3)^2 = 4$ whereas $(-5)^2 = 25$ Not true	A1	2.4
		(2)	
(5 mark			marks)

Notes			
(i) Method One: Completing the Square			
M1: For an attempt to complete the square. Accept $(x - x)$	4) ²		
A1: For $(x-4)^2 + 1$ with either $(x-4)^2 \ge 0, (x-4)^2 + 1 \ge 1$ or min at (4,1). Accept the inequality			
statements in words. Condone $(x-4)^2 > 0$ or a squared n	number is always positive for this mark.		
A1: A fully written out solution, with correct statements	and no incorrect statements. There must		
be a valid reason and a conclusion			
$x^2 - 8x + 17$	correct M1 A1 A1		
$=(x-4)^2+1 \ge 1 \operatorname{as} (x-4)^2 \ge 0$	SCOLES MI AI AI		
Hence $(x-4)^2 + 1 > 0$			
$x^2 - 8x + 17 > 0$	coores M1 A1 A1		
$(x-4)^2+1>0$	scores MI AI AI		
This is true because $(x-4)^2 \ge 0$ and when you add 1 it is	going to be positive		
$x^2 - 8x + 17 > 0$	coores M1 A1 A0		
$(x-4)^2+1>0$	scoles MI AI AU		
which is true because a squared number is positive	incorrect and incomplete		
$x^2 - 8x + 17 = (x - 4)^2 + 1$	scores M1 A1 A0		
Minimum is (4,1) so $x^2 - 8x + 17 > 0$	correct but not explained		
$x^2 - 8x + 17 = (x - 4)^2 + 1$	scores M1 A1 A1		
Minimum is (4,1) so as $1 > 0 \Rightarrow x^2 - 8x + 17 > 0$	correct and explained		
2			
x - 8x + 17 > 0	scores M1 A0 (no explanation) A0		
$(x-4)^{-}+1>0$			
Method Two: Use of a discriminant			
M1: Attempts to find the discriminant $b^2 - 4ac$ with a quadratic formula. You may condone missing bracket	correct a, b and c which may be within a ts.		
A1: Correct value of $b^2 - 4ac = -4$ and states or shows curve is U shaped (or intercept is (0,17))			
or equivalent such as $+$ ve x^2 etc			
A1: Explains that as $b^2 - 4ac < 0$, there are no roots, and curve is U shaped then $x^2 - 8x + 17 > 0$			
Method Three: Differentiation M1: Attempting to differentiate and finding the turning	point. This would involve attempting to		
find $\frac{dy}{dx}$, then setting it equal to 0 and solving to find the x value and the y value.			
A1: For differentiating $\frac{dy}{dx} = 2x - 8 \Rightarrow (4,1)$ is the turning point			
A1: Shows that (4,1) is the minimum point (second derivative or U shaped), hence			
$x^2 - 8x + 17 > 0$			

Method 4: Sketch graph using calculator M1: Attempting to sketch $y = x^2 - 8x + 17$, U shape with minimum in quadrant one A1: As above with minimum at (4,1) marked A1: Required to state that quadratics only have one turning point and as "1" is above the x-axis then $x^2 - 8x + 17 > 0$ (ii) Numerical approach Do not allow any marks if the student just mentions "positive" and "negative" numbers. Specific examples should be seen calculated if a numerical approach is chosen. M1: Attempts a value (where it is not true) and shows/implies that it is not true for that value. For example, for -4: $(-4+3)^2 > (-4)^2$ and indicates not true (states not true, *) or writing $(-4+3)^2 < (-4)^2$ is sufficient to imply that it is not true A1: Shows/implies that it can be true for a value AND states sometimes true. For example for +4: $(4+3)^2 > 4^2$ and indicates true \checkmark or writing $(4+3)^2 > 4^2$ is sufficient to imply this is true following $(-4+3)^2 < (-4)^2$ condone incorrect statements following the above such as 'it is only true for positive numbers' as long as they state "sometimes true" and show both cases. Algebraic approach M1: Sets the problem up algebraically Eg. $(x+3)^2 > x^2 \Rightarrow x > k$ Any inequality is fine. You may condone one error for the method mark. Accept $(x+3)^2 > x^2 \Rightarrow 6x+9 > 0$ oe A1: States sometimes true and states/implies true for $x > -\frac{3}{2}$ or states/implies not true for $x \le -\frac{3}{2}$ In both cases you should expect to see the statement "sometimes true" to score the A1

Q4.

Question	Scheme	Marks	AOs
	Attempts equation of line Eg Substitutes $(-2,13)$ into $y = mx + 25$ and finds m	M1	1.1b
	Equation of <i>l</i> is $y = 6x + 25$	A1	1.1b
	Attempts equation of C Eg Attempts to use the intercept $(0, 25)$ within the equation $y = a(x \pm 2)^2 + 13$, in order to find a	M1	3.1a
	Equation of C is $y = 3(x+2)^2 + 13$ or $y = 3x^2 + 12x + 25$	A1	1.1b
	Region <i>R</i> is defined by $3(x+2)^2 + 13 < y < 6x + 25$ o.e.	B1ft	2.5
		(5)	
			(5 marks)

The first two marks are awarded for finding the equation of the line

M1: Uses the information in an attempt to find an equation for the line l. 25-13

E.g. Attempt using two points: Finds $m = \pm \frac{25-13}{2}$ and uses of one of the points in their y = mx + c or equivalent to find c. Alternatively uses the intercept as shown in main scheme.

- A1: y = 6x + 25 seen or implied. This alone scores the first two marks. Do not accept l = 6x + 25
 - It must be in the form y = ... but the correct equation can be implied from an inequality. E.g. < y < 6x + 25

The next two marks are awarded for finding the equation of the curve

M1: A complete method to find the constant *a* in $y = a(x \pm 2)^2 + 13$ or the constants *a*, *b* in $y = ax^2 + bx + 25$. An alternative to the main scheme is deducing equation is of the form $y = ax^2 + bx + 25$ and setting

and solving a pair of simultaneous equations in a and b using the point (-2, 13) the gradient

being 0 at x = -2. Condone slips. Implied by $C = 3x^2 + 12x + 25$ or $3x^2 + 12x + 25$

FYI the correct equations are 13 = 4a - 2b + 25(2a - b = -6) and -4a + b = 0

A1: $y=3(x+2)^2+13$ or equivalent such as $y=3x^2+12x+25$, $f(x)=3(x+2)^2+13$.

Do not accept $C = 3x^2 + 12x + 25$ or just $3x^2 + 12x + 25$ for the A1 but may be implied from an inequality or from an attempt at the area, E.g. $\int 3x^2 + 12x + 25 \, dx$

Blft: Fully defines the region R. Follow through on their equations for l and C.

Allow strict or non -strict inequalities as long as they are used consistently.

E.g. Allow for example " $3(x+2)^2+13 < y < 6x+25$ " " $3(x+2)^2+13 \le y \le 6x+25$ "

Allow the inequalities to be given separately, e.g. y < 6x + 25, $y > 3(x + 2)^2 + 13$. Set notation may be used so

 $\{(x, y): y > 3(x+2)^2 + 13\} \cap \{(x, y): y < 6x + 25\}$ is fine but condone with or without any of $(x, y) \leftrightarrow y \leftrightarrow x$

Incorrect examples include "y < 6x + 25 or $y > 3(x + 2)^2 + 13$ ", $\{(x, y): y > 3(x + 2)^2 + 13\} \cup \{(x, y): y < 6x + 25\}$

Values of x could be included but they must be correct. So $3(x+2)^2+13 < y < 6x+25$, x < 0 is fine If there are multiple solutions mark the final one.