Questions

Q1.

In this question you should show all stages of your working.
Solutions relying on calculator technology are not acceptable.
Using algebra, solve the inequality

$$
x^{2}-x>20
$$

writing your answer in set notation.

Q2.
(a) Prove that for all positive values of x and y

$$
\sqrt{x y} \leq \frac{x+y}{2}
$$

(b) Prove by counter example that this is not true when x and y are both negative.

Q3.
(i) Show that $x^{2}-8 x+17>0$ for all real values of x
(ii) "If I add 3 to a number and square the sum, the result is greater than the square of the original number."

State, giving a reason, if the above statement is always true, sometimes true or never true.

Q4.

Figure 1
Figure 1 shows a sketch of a curve C with equation $y=f(x)$ and a straight line I.
The curve C meets I at the points $(-2,13)$ and $(0,25)$ as shown.
The shaded region R is bounded by C and I as shown in Figure 1 .
Given that

- $\mathrm{f}(x)$ is a quadratic function in x
- $(-2,13)$ is the minimum turning point of $y=\mathrm{f}(x)$
use inequalities to define R.

Mark Scheme

Q1.

Question	Scheme	Marks	AOs
	Finds critical values $x^{2}-x>20 \Rightarrow x^{2}-x-20>0 \Rightarrow x=(5,-4)$	M1	1.1 b
	Chooses outside region for their values Eg. $x>5, x<-4$	M1	1.1 b
	Presents solution in set notation $\{x: x<-4\} \cup\{x: x>5\}$ oe	A1	2.5
		(3)	
(3 marks)			

Notes

M1: Attempts to find the critical values using an algebraic method. Condone slips but an allowable method should be used and two critical values should be found

M1: Chooses the outside region for their critical values. This may appear in incorrect inequalities such as $5<x<-4$

A1: Presents in set notation as required $\{x: x<-4\} \cup\{x: x>5\}$ Accept $\{x<-4 \cup x>5\}$.
Do not accept $\{x<-4, x>5\}$

Note: If there is a contradiction of their solution on different lines of working do not penalise intermediate working and mark what appears to be their final answer.

Q2.

Question	Scheme	Marks	AOs
$\begin{array}{r} \text { (a) } \\ \text { Way } 1 \end{array}$	Since x and y are positive, their square roots are real and so $(\sqrt{x}-\sqrt{y})^{2} \geq 0$ giving $\quad x-2 \sqrt{x} \sqrt{y}+y \geq 0$	M1	2.1
	$\therefore 2 \sqrt{x y} \leq x+y$ provided x and y are positive and so $\sqrt{x y} \leq \frac{x+y}{2} *$	A1*	2.2a
		(2)	
Way 2 Longer method	Since $(x-y)^{2} \geq 0$ for real values of x and y, $x^{2}-2 x y+y^{2} \geq 0 \text { and so } 4 x y \leq x^{2}+2 x y+y^{2} \text { i.e. } 4 x y \leq(x+y)^{2}$	M1	2.1
	$\therefore 2 \sqrt{x y} \leq x+y$ provided x and y are positive and so $\sqrt{x y} \leq \frac{x+y}{2} *$	A1*	2.2a
		(2)	
(b)	Let $x=-3$ and $y=-5$ then LHS $=\sqrt{15}$ and RHS $=-4$ so as $\sqrt{15}>-4$ result does not apply	B1	2.4
		(1)	
(3 marks)			

(a) M1: Need two stages of the three stage argument involving the three stages, squaring, square rooting terms and rearranging.
A1*: Need all three stages making the correct deduction to achieve the printed result.
(b)

B1: Chooses two negative values and substitutes, then states conclusion

Q3.

Question	Scheme	Marks	AOs
(i)	$x^{2}-8 x+17=(x-4)^{2}-16+17$	M1	3.1a
	$=(x-4)^{2}+1$ with comment (see notes)	A1	1.1 b
	As $(x-4)^{2} \geqslant 0 \Rightarrow(x-4)^{2}+1 \geqslant 1$ hence $x^{2}-8 x+17>0$ for all x	A1	2.4
		(3)	
(ii)	For an explanation that it may not always be true Tests say $x=-5 \quad(-5+3)^{2}=4$ whereas $(-5)^{2}=25$	M1	2.3
	States sometimes true and gives reasons Eg. when $\quad x=5 \quad(5+3)^{2}=64$ whereas $(5)^{2}=25$ True When $\quad x=-5 \quad(-5+3)^{2}=4$ whereas $(-5)^{2}=25$ Not true	A1	2.4
		(2)	
(5 marks)			

Notes

(i) Method One: Completing the Square

M1: For an attempt to complete the square. Accept $(x-4)^{2} \ldots$
A1: For $(x-4)^{2}+1$ with either $(x-4)^{2} \geqslant 0,(x-4)^{2}+1 \geqslant 1$ or \min at $(4,1)$. Accept the inequality statements in words. Condone $(x-4)^{2}>0$ or a squared number is always positive for this mark. A1: A fully written out solution, with correct statements and no incorrect statements. There must be a valid reason and a conclusion
$x^{2}-8 x+17$
$=(x-4)^{2}+1 \geqslant 1$ as $(x-4)^{2} \geqslant 0 \quad$ scores M1 A1 A1
$=(x-4)^{2}+1 \geqslant \operatorname{tas}(x-4)^{2} \geqslant 0$
Hence $(x-4)^{2}+1>0$
$x^{2}-8 x+17>0$
$(x-4)^{2}+1>0 \quad$ scores M1 A1 A1
This is true because $(x-4)^{2} \geqslant 0$ and when you add 1 it is going to be positive
$x^{2}-8 x+17>0$
$(x-4)^{2}+1>0 \quad$ scores M1 A1 A0
which is true because a squared number is positive incorrect and incomplete
$x^{2}-8 x+17=(x-4)^{2}+1 \quad$ scores M1 A1 A0
Minimum is $(4,1)$ so $x^{2}-8 x+17>0 \quad$ correct but not explained
$x^{2}-8 x+17=(x-4)^{2}+1 \quad$ scores M1 A1 A1
Minimum is $(4,1)$ so as $1>0 \Rightarrow x^{2}-8 x+17>0 \quad$ correct and explained
$x^{2}-8 x+17>0$
$(x-4)^{2}+1>0$$\quad$ scores M1 A0 (no explanation) A0

Method Two: Use of a discriminant

M1: Attempts to find the discriminant $b^{2}-4 a c$ with a correct a, b and c which may be within a quadratic formula. You may condone missing brackets.
A1: Correct value of $b^{2}-4 a c=-4$ and states or shows curve is U shaped (or intercept is $(0,17)$) or equivalent such as +ve x^{2} etc
A1: Explains that as $b^{2}-4 a c<0$, there are no roots, and curve is U shaped then $x^{2}-8 x+17>0$

Method Three: Differentiation

M1: Attempting to differentiate and finding the turning point. This would involve attempting to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, then setting it equal to 0 and solving to find the x value and the y value.
A1: For differentiating $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-8 \Rightarrow(4,1)$ is the turning point
A1: Shows that $(4,1)$ is the minimum point (second derivative or U shaped), hence $x^{2}-8 x+17>0$

Method 4: Sketch graph using calculator

M1: Attempting to sketch $y=x^{2}-8 x+17, \mathrm{U}$ shape with minimum in quadrant one
A1: As above with minimum at $(4,1)$ marked
A1: Required to state that quadratics only have one turning point and as " 1 " is above the x-axis then $x^{2}-8 x+17>0$
(ii)

Numerical approach
Do not allow any marks if the student just mentions "positive" and 'negative" numbers. Specific examples should be seen calculated if a numerical approach is chosen.

M1: Attempts a value (where it is not true) and shows/implies that it is not true for that value.
For example, for -4 : $(-4+3)^{2}>(-4)^{2}$ and indicates not true (states not true, \mathbf{x})
or writing $(-4+3)^{2}<(-4)^{2}$ is sufficient to imply that it is not true
A1: Shows/implies that it can be true for a value AND states sometimes true.
For example for $+4:(4+3)^{2}>4^{2}$ and indicates true \checkmark
or writing $(4+3)^{2}>4^{2}$ is sufficient to imply this is true following $(-4+3)^{2}<(-4)^{2}$ condone incorrect statements following the above such as 'it is only true for positive numbers' as long as they state "sometimes true" and show both cases.
Algebraic approach
M1: Sets the problem up algebraically Eg. $(x+3)^{2}>x^{2} \Rightarrow x>k$ Any inequality is fine. You may condone one error for the method mark. Accept $(x+3)^{2}>x^{2} \Rightarrow 6 x+9>0$ oe
A1: States sometimes true and states/implies true for $x>-\frac{3}{2}$ or states/implies not true for $x \leq-\frac{3}{2}$ In both cases you should expect to see the statement "sometimes true" to score the A1

Q4.

Question	Scheme	Marks	AOs
	Attempts equation of line Eg Substitutes $(-2,13)$ into $y=m x+25$ and finds m	M1	1.1 b
	Equation of l is $y=6 x+25$	A1	1.1 b
	Attempts equation of C Eg Attempts to use the intercept $(0,25)$ within the equation $y=a(x \pm 2)^{2}+13, \quad$ in order to find a	M1	3.1 a
	Equation of C is $y=3(x+2)^{2}+13$ or $y=3 x^{2}+12 x+25$	A1	1.1 b
	Region R is defined by $3(x+2)^{2}+13<y<6 x+25$ o.e.	B1ft	2.5
	$\mathbf{(5)}$		

The first two marks are awarded for finding the equation of the line
M1: Uses the information in an attempt to find an equation for the line l.
E.g. Attempt using two points: Finds $m= \pm \frac{25-13}{2}$ and uses of one of the points in their $y=m x+c$ or equivalent to find c. Alternatively uses the intercept as shown in main scheme.
A1: $y=6 x+25$ seen or implied. This alone scores the first two marks. Do not accept $l=6 x+25$
It must be in the form $y=\ldots$ but the correct equation can be implied from an inequality. E.g. $\ldots<y<6 x+25$

The next two marks are awarded for finding the equation of the curve

M1: A complete method to find the constant a in $y=a(x \pm 2)^{2}+13$ or the constants a, b in $y=a x^{2}+b x+25$.
An alternative to the main scheme is deducing equation is of the form $y=a x^{2}+b x+25$ and setting and solving a pair of simultaneous equations in a and b using the point $(-2,13)$ the gradient
being 0 at $x=-2$. Condone slips. Implied by $C=3 x^{2}+12 x+25$ or $3 x^{2}+12 x+25$
FYI the correct equations are $13=4 a-2 b+25(2 a-b=-6)$ and $-4 a+b=0$
A1: $y=3(x+2)^{2}+13$ or equivalent such as $y=3 x^{2}+12 x+25, \mathrm{f}(x)=3(x+2)^{2}+13$.
Do not accept $C=3 x^{2}+12 x+25$ or just $3 x^{2}+12 x+25$ for the A1 but may be implied from an inequality or from an attempt at the area, E.g. $\int 3 x^{2}+12 x+25 \mathrm{~d} x$
Blft: Fully defines the region R. Follow through on their equations for l and C.
Allow strict or non -strict inequalities as long as they are used consistently.
E.g. Allow for example " $3(x+2)^{2}+13<y<6 x+25 " \quad " 3(x+2)^{2}+13 \leqslant y \leqslant 6 x+25$ "

Allow the inequalities to be given separately, e.g. $y<6 x+25, y>3(x+2)^{2}+13$. Set notation may be used so $\left\{(x, y): y>3(x+2)^{2}+13\right\} \cap\{(x, y): y<6 x+25\}$ is fine but condone with or without any of $(x, y) \leftrightarrow y \leftrightarrow x$
Incorrect examples include " $y<6 x+25$ or $y>3(x+2)^{2}+13^{\prime \prime}$ " $\left\{(x, y): y>3(x+2)^{2}+13\right\} \cup\{(x, y): y<6 x+25\}$
Values of x could be included but they must be correct. So $3(x+2)^{2}+13<y<6 x+25, x<0$ is fine If there are multiple solutions mark the final one.

