Basic Algebra Questions – Mainly Surds

1	(a)	Simplify $(\sqrt{5}+2)(\sqrt{5}-2)$.	(2 marks)
	(b)	Express $\sqrt{8} + \sqrt{18}$ in the form $n\sqrt{2}$, where <i>n</i> is an integer.	(2 marks)
4	(a)	Express $(4\sqrt{5}-1)(\sqrt{5}+3)$ in the form $p+q\sqrt{5}$, where p and q are integers	(3 marks)
	(b)	Show that $\frac{\sqrt{75} - \sqrt{27}}{\sqrt{3}}$ is an integer and find its value.	(3 marks)
3	(a)	Express $\frac{\sqrt{5}+3}{\sqrt{5}-2}$ in the form $p\sqrt{5}+q$, where p and q are integers.	(4 marks)
	(b)	(i) Express $\sqrt{45}$ in the form $n\sqrt{5}$, where <i>n</i> is an integer.	(1 mark)
		(ii) Solve the equation	
		$x\sqrt{20} = 7\sqrt{5} - \sqrt{45}$	
		giving your answer in its simplest form.	(3 marks)
2	(a)	Express $\frac{\sqrt{63}}{3} + \frac{14}{\sqrt{7}}$ in the form $n\sqrt{7}$, where <i>n</i> is an integer.	(3 marks)
	(b)	Express $\frac{\sqrt{7}+1}{\sqrt{7}-2}$ in the form $p\sqrt{7}+q$, where p and q are integers.	(4 marks)

Basic Algebra Answers – Mainly Surds

1(a)	$\left(\sqrt{5}\right)^2 + 2\sqrt{5} - 2\sqrt{5} - 4 = 1$	M1		Multiplying out or difference of two squares attempted
		A1	2	Full marks for correct answer /no working
(b)	$\sqrt{8} = 2\sqrt{2}$; $\sqrt{18} = 3\sqrt{2}$ Answer = $5\sqrt{2}$	M1		Either correct
	Answer = $5\sqrt{2}$	A1	2	Full marks for correct answer /no working
	Total		4	
4(a)				Multiplied out
.()	$4(\sqrt{5})^2 + 12\sqrt{5} - \sqrt{5} - 3$	M1		At least 3 terms with $\sqrt{5}$ term
	$4(\sqrt{5})^{2} + 12\sqrt{5} - \sqrt{5} - 3$ $4(\sqrt{5})^{2} = 4 \times 5 (= 20)$ Answer = 17 + 11\sqrt{5}	B1		
	Answer $= 17 + 11\sqrt{5}$	A1	3	
(b)	Either $\sqrt{75} = \sqrt{25}\sqrt{3}$ or $\sqrt{27} = \sqrt{9}\sqrt{3}$	M1		Or multiplying top and bottom by $\sqrt{3}$
		1111		
	Expression = $\frac{5\sqrt{3} - 3\sqrt{3}}{\sqrt{3}}$	A1		or $\frac{\sqrt{225} - \sqrt{81}}{3}$ or $\sqrt{25} - \sqrt{9}$ or $5-3$
	= 2	A1	3	CSO
	Total		6	

3 (a)	$\frac{\sqrt{5}+3}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2}$	M1		Multiplying top & bottom by $\pm(\sqrt{5}+2)$
	$\sqrt{5-2} = \sqrt{5+2}$ Numerator = 5+3 $\sqrt{5}$ +2 $\sqrt{5}$ +6	M1		Multiplying out (condone one slip)
				$\pm \left(\sqrt{5+3}\right) \left(\sqrt{5+2}\right)$
	$= 5\sqrt{5} + 11$	A1		
	Final answer = $5\sqrt{5} + 11$	A1	4	With clear evidence that denominator =1
(b)(i)	$\sqrt{45} = 3\sqrt{5}$	B1	1	
(ii)	$\sqrt{20} = \sqrt{4}\sqrt{5}$ or $4\sqrt{5} = \sqrt{4} \times \sqrt{20}$	M1		Both sides
	or attempt to have equation with $\sqrt{5}$			
	or $\sqrt{20}$ only			
	$\left[x \ 2\sqrt{5} = 7\sqrt{5} - 3\sqrt{5}\right]$ or $x\sqrt{20} = 2\sqrt{20}$	A1		or $x = \sqrt{4}$
	<i>x</i> = 2	A1	3	CSO
	Total		8	

2(a)	$\frac{\sqrt{63}}{3} = \sqrt{7}$ or $\frac{3\sqrt{7}}{3}$	B1		or $\frac{\left(\sqrt{7}\sqrt{63}+14\times3\right)}{3\sqrt{7}}$
	$\frac{14}{\sqrt{7}} = 2\sqrt{7}$ or $\frac{14\sqrt{7}}{7}$	B1		or $\frac{\sqrt{7}}{\sqrt{7}}$ () M1
	\Rightarrow sum = $3\sqrt{7}$	B1	3	⇒ correct answer with all working correct A2
(b)	Multiply by $\frac{\sqrt{7}+2}{\sqrt{7}+2}$	M1		
	Denominator = $7 - 4 = 3$	A1		
	Numerator = $\left(\sqrt{7}\right)^2 + \sqrt{7} + 2\sqrt{7} + 2$	m1		multiplied out (allow one slip) $9 + 3\sqrt{7}$
	Answer = $\sqrt{7} + 3$	A1	4	
	Total		7	