Basic Algebra Questions – Mainly Quadratics

- 3 (a) (i) Express $x^2 4x + 9$ in the form $(x p)^2 + q$, where p and q are integers. (2 marks)
 - (ii) Hence, or otherwise, state the coordinates of the minimum point of the curve with equation $y = x^2 4x + 9$. (2 marks)
- 4 The quadratic equation $x^2 + (m+4)x + (4m+1) = 0$, where m is a constant, has equal roots.
 - (a) Show that $m^2 8m + 12 = 0$. (3 marks)
 - (b) Hence find the possible values of m. (2 marks)
- 2 (a) Express $x^2 + 8x + 19$ in the form $(x+p)^2 + q$, where p and q are integers. (2 marks)
 - (b) Hence, or otherwise, show that the equation $x^2 + 8x + 19 = 0$ has no real solutions. (2 marks)
 - (c) Sketch the graph of $y = x^2 + 8x + 19$, stating the coordinates of the minimum point and the point where the graph crosses the *y*-axis. (3 marks)
 - (d) Describe geometrically the transformation that maps the graph of $y = x^2$ onto the graph of $y = x^2 + 8x + 19$. (3 marks)
- (ii) Find the values of k for which the equation

$$x^2 - 2(k+1)x + 2k^2 - 7 = 0$$

has equal roots.

(4 marks)

- 7 The quadratic equation $(k+1)x^2 + 12x + (k-4) = 0$ has real roots.
 - (a) Show that $k^2 3k 40 \le 0$. (3 marks)
 - (b) Hence find the possible values of k. (4 marks)

3 (a) (i) Express $x^2 + 10x + 19$ in the form $(x+p)^2 + q$, where p and q are integers. (2 marks)

- (ii) Write down the coordinates of the vertex (minimum point) of the curve with equation $y = x^2 + 10x + 19$. (2 marks)
- (iii) Write down the equation of the line of symmetry of the curve $y = x^2 + 10x + 19$. (1 mark)
- (iv) Describe geometrically the transformation that maps the graph of $y = x^2$ onto the graph of $y = x^2 + 10x + 19$. (3 marks)
- (b) Determine the coordinates of the points of intersection of the line y = x + 11 and the curve $y = x^2 + 10x + 19$. (4 marks)
- 7 The quadratic equation

$$(2k-3)x^2 + 2x + (k-1) = 0$$

where k is a constant, has real roots.

- (a) Show that $2k^2 5k + 2 \le 0$. (3 marks)
- (b) (i) Factorise $2k^2 5k + 2$. (1 mark)
 - (ii) Hence, or otherwise, solve the quadratic inequality

$$2k^2 - 5k + 2 \leqslant 0 \tag{3 marks}$$

Basic Algebra Answers – Mainly Quadratics

3(a)(i)	$(x-2)^2$	B1		<i>p</i> = 2
	+ 5	B1	2	q = 5
(ii)	Minimum point (2, 5) or $x = 2$, $y = 5$	Β2√	2	B1 for each coordinate correct or ft Alt method M1, A1 sketch, differentiation
4(a)	$(m+4)^2 = m^2 + 8m + 16$	B1		Condone $4m + 4m$
	$b^{2} - 4ac = (m+4)^{2} - 4(4m+1) = 0$ $m^{2} + 8m + 16 - 16m - 4 = 0$	M1		$b^2 - 4ac$ (attempted and involving <i>m</i> 's and no <i>x</i> 's) or $b^2 - 4ac = 0$ stated
	$\Rightarrow m^2 - 8m + 12 = 0$	A1	3	AG (be convinced – all working correct= 0 appearing more than right at the end)
(b)	(m-2)(m-6) = 0 m = 2, m = 6	M1 A1	2	Attempt at factors or quadratic formula SC B1 for 2 or 6 only without working
		AI		SC BI 101 2 01 0 0 my without working
	Total		5	
	$(x+4)^2$	B1 B1	2	$ \begin{array}{c} p = 4 \\ q = 3 \end{array} $
	+3	ы	2	q = 5
(b)	$(x+4)^2 = -3$ or "their" $(x+p)^2 = -q$	M1		Or discriminant = $64 - 76$
	No real square root of -3	A1	2	Disc < 0 so no real roots (all correct figs)
	$v \land v \land v$			
(c)	19 Minimum (- 4, 3)	B1√		ft their $-p$ and q (or correct)
	graph	B1		Parabola (vertex roughly as shown)
		B1 B1	3	
	-4	DI	3	Crossing at $y = 19$ marked or $(0, 19)$ stated
	Turnelation (and no additional transfin)	E1		Not shift, move, transformation, etc
	Translation (and no additional transf'n) $\lceil -4 \rceil$	M1		One component correct eg 3 units up
	through $\begin{bmatrix} -4\\ 3 \end{bmatrix}$	A1	3	All correct – if not vector – must say 4 units in negative x- direction, to left etc
	Total		10	
(ii)	$4(k+1)^{2} - 4(2k^{2} - 7)$ $4k^{2} - 8k - 32 = 0 \text{ or } k^{2} - 2k - 8 = 0$ (k-4)(k+2) = 0 $k = -2, \ k = 4$	M1		" $b^2 - 4ac$ " in terms of k (either term correct)
	$4k^2 - 8k - 32 = 0 \text{ or } k^2 - 2k - 8 = 0$	A1		correct) $b^2 - 4ac = 0$ correct quadratic equation in b^2
	(k-4)(k+2) = 0	m1		Attempt to factorise, solve equation
	(n - 4)(n + 2) = 0	mi		intempt to interist, serve equation

7(a)	$b^2 - 4ac = 144 - 4(k+1)(k-4)$	M1		Clear attempt at $b^2 - 4ac$ Condone slip in one term of expression
	Real roots when $b^2 - 4ac \ge 0$ $36 - (k^2 - 3k - 4) \ge 0$	B1		Not just a statement, must involve k
	$\Rightarrow k^2 - 3k - 40 \leqslant 0$	A1	3	AG (watch signs carefully)
(b)	(k-8)(k+5) Critical points 8 and -5	M1 A1		Factors attempt or formula
	Sketch or sign diagram correct , must have 8 and -5 $-5 \le k \le 8$	M1 A1	4	+ve -ve +ve -5 8
	A0 for $-5 < k < 8$ or two separate inequalities unless word AND used			
	Total		7	

3(a)(i)	$(x+5)^2$	B1		<i>p</i> = 5
	-6	B1	2	<i>q</i> = -6
(ii)	$x_{\text{vertex}} = -5$ (or their $-p$)	В1√		may differentiate but must have $x = -5$
	$y_{\text{vertex}} = -6 \text{ (or their } q)$	В1√	2	and $y = -6$. Vertex $(-5, -6)$
(iii)	<i>x</i> = - 5	B1	1	
(iv)	Translation (not shift, move etc)	E1		and NO other transformation stated
	through $\begin{bmatrix} -5\\ -6 \end{bmatrix}$ (or 5 left, 6 down)	M1 A1	3	either component correct M1, A1 independent of E mark
(b)	$x + 11 = x^2 + 10x + 19$			quadratic with all terms on one side of equation
	$\Rightarrow x^2 + 9x + 8 = 0$ or $y^2 - 13y + 30 = 0$	M1		
	(x+8)(x+1)=0 or $(y-3)(y-10)=0$	m1		attempt at formula (1 slip) or to factorise
	$\begin{array}{c} x = -1 \\ y = 10 \end{array}$ or $\begin{array}{c} x = -8 \\ y = 3 \end{array}$	A1		both x values correct
	$y = 10 \int y = 3 \int$	A1	4	both y values correct and linked
				SC (-1,10) B2, (-8,3) B2 no working
	Total		12	

7(a)	$b^2 - 4ac = 4 - 4(k - 1)(2k - 3)$	M1		(or seen in formula) condone one slip
	Real roots when $b^2 - 4ac \ge 0$	E1		must involve $f(k) \ge 0$ (usually M1 must be earned)
	$4-4(2k^2-5k+3) \ge 0$			
	$\Rightarrow -2k^2 + 5k - 3 + 1 \ge 0$			at least one step of working justifying $\leqslant 0$
	$\Rightarrow 2k^2 - 5k + 2 \leq 0$	A1	3	AG
(b)(i)	(2k-1)(k-2)	B1	1	
(ii)	(Critical values) $\frac{1}{2}$ and 2	В1√		ft their factors or correct values seen on diagram, sketch or inequality or stated
	+ , - , +			
	$\frac{1}{2}$ 2	M1		use of sketch / sign diagram
	$\Rightarrow 0.5 \leq k \leq 2$	A1	3	M1A0 for $0.5 < k < 2$ or $k \ge 0.5$, $k \le 2$
	Total		7	